
Freeman

Shelve in
.NET

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro ASP.NET MVC 5 Platform
The power of ASP.NET MVC 5 stems from the underlying ASP.NET platform. To make your 
ASP.NET MVC applications the best they can be, you need to fully understand the platform 
features and know how they can be used to build effective and elegant MVC framework 
applications.

The ASP.NET platform provides ASP.NET MVC applications with a rich suite of services 
including vital every-day features like extensible request handling, state management, and 
user authentication. Understanding how these features work is the difference between 
creating an average web application and the best-in-class. 

MVC applications that are architected with a thorough knowledge of the underlying 
platforms are faster to write, faster to run, and more readily adaptable to change. In Pro 
ASP.NET MVC 5 Platform, best-selling author Adam Freeman explains how to get the 
most from the entire ASP.NET platform, beginning with a nuts-and-bolts description 
of the patterns and tools you need through to the most advanced features. He goes 
in-depth at every stage to give you the practical knowledge that you need to apply these 
concepts to your own code.

You’ll learn to:

• Understand how ASP.NET MVC 5 is built on the ASP.NET platform
•  Create scalable MVC framework web applications that work in 

harmony with the underlying platform
•  Understand the ASP.NET Lifecycle and how it affects the whole 

ASP.NET stack
•  Extend and Customize the ASP.NET platform to suit your 

MVC5 web application 

The book is ideal for anyone wanting to use ASP.NET MVC 5 in a professional context. 
It works particularly well as a compliment to Adam Freeman’s other ASP.NET MVC titles 
Pro ASP.NET MVC 5, Pro ASP.NET MVC 5 Client, and Expert ASP.NET Web API 2 for 
MVC Developers.

RELATED

9 781430 265412

55999
ISBN 978-1-4302-6541-2



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 



v

Contents at a Glance

About the Author����������������������������������������������������������������������������������������������������������������� xv

About the Technical Reviewer������������������������������������������������������������������������������������������� xvii

Part 1: Getting Ready■■ ������������������������������������������������������������������������������������� 1

Chapter 1: Putting the ASP.NET Platform in Context■■ �����������������������������������������������������������3

Chapter 2: Pattern and Tools Primer■■ ����������������������������������������������������������������������������������9

Part 2: The ASP.NET Platform Foundation■■ ���������������������������������������������������� 23

Chapter 3: The ASP.NET Life Cycles■■ ����������������������������������������������������������������������������������25

Chapter 4: Modules■■ ����������������������������������������������������������������������������������������������������������55

Chapter 5: Handlers■■ ����������������������������������������������������������������������������������������������������������79

Chapter 6: Disrupting the Request Life Cycle■■ �����������������������������������������������������������������105

Chapter 7: Detecting Device Capabilities■■ �����������������������������������������������������������������������129

Chapter 8: Tracing Requests■■ �������������������������������������������������������������������������������������������159

Part 3: The ASP.NET Platform Services■■ ������������������������������������������������������ 177

Chapter 9: Configuration■■ ������������������������������������������������������������������������������������������������179

Chapter 10: State Data■■ ���������������������������������������������������������������������������������������������������217

Chapter 11: Caching Data■■ �����������������������������������������������������������������������������������������������251

Chapter 12: Caching Content■■ ������������������������������������������������������������������������������������������273



■ Contents at a Glance

vi

Chapter 13: Getting Started with Identity■■ �����������������������������������������������������������������������297

Chapter 14: Applying ASP.NET Identity■■ ���������������������������������������������������������������������������333

Chapter 15: Advanced ASP.NET Identity■■ �������������������������������������������������������������������������365

Index����������������������������������������������������������������������������������������������������������������������������������399



Part 1

Getting Ready



3

Chapter 1

Putting the ASP.NET Platform  
in Context

The ASP.NET platform was originally developed for use with Web Forms, and support for the MVC framework was 
added later. The ASP.NET platform is full of rich and useful features, but most guides to the MVC framework assumed 
that programmers have experience in Web Forms development and already know what the platform is capable of 
doing. That was a reasonable assumption when the MVC framework was new, but a new generation of ASP.NET 
developers has jumped right in with MVC without using Web Forms and—by implication—the features that the  
ASP.NET platform provides.

This book corrects the problem, detailing the features of the ASP.NET platform for the MVC framework developer 
who has no Web Forms experience (and no desire to acquire any). Throughout this book, I show you how the ASP.
NET platform underpins the MVC framework and how you can take advantage of the platform to improve your MVC 
applications.

You don’t need to know how the ASP.NET platform works to build MVC framework applications, but you will 
want to know when you learn just how much functionality is available and how it can help simplify application 
development, customize the way that the MVC framework operates, and scale up applications to larger numbers of 
users, both for local and cloud-deployed applications.

Note■■   This book is not an MVC framework tutorial, and I assume you have a basic understanding of MVC and web 
application development in general. If you are new to the MVC framework, then start by reading my Pro ASP.NET MVC 5 
book, which is also published by Apress.

What Is the ASP.NET Platform?
ASP.NET was originally synonymous with Web Forms, which aims to make the web application development 
experience as similar as possible to developing a traditional desktop application and to abstract away the details of 
HTML and HTTP.

Web Forms has achieved remarkable market penetration despite having a reputation for producing hard-to-
maintain applications and being bandwidth hungry. Microsoft continually improves and updates Web Forms—and 
it is still a widely used technology—but the broad development trend is away from abstraction and toward embracing 
the stateless nature of HTTP. To remain current in the web development world, Microsoft extended ASP.NET to 
include the MVC framework and, more recently, SignalR and Web API.



Chapter 1 ■ Putting the ASP.NET Platform in Context 

4

These technologies have disparate natures. The MVC framework is an alternative to Web Forms for building 
complete web applications (one I assume you are familiar with if you are reading this book). SignalR uses an HTML5 
feature called web sockets to enable real-time communication between a browser and a server, and Web API is used 
to create web services and APIs that deliver JSON or XML content.

For all their differences, the ASP.NET technologies share some common characteristics, and this is where the ASP.
NET platform starts to emerge. Features that are common across ASP.NET—such as the need to receive and process 
HTTP requests, for example—are implemented in a common foundation, which results in the technology stack shown 
in Figure 1-1.

Figure 1-1.  The ASP.NET foundation

Figure 1-2.  The ASP.NET services

The dotted line in the figure illustrates that some of the design decisions made when Web Forms was the only 
ASP.NET technology are still present in the ASP.NET foundation. For the most part, this just means that there are some 
odd method names in the foundation API, which I describe in Part 2 of this book.

The ASP.NET platform doesn’t just provide common features to the ASP.NET technology stack; it also provides a 
set of services that make it easier to write web applications, such as security, state data, and caching, as illustrated by 
Figure 1-2.

When using the MVC framework, you will usually consume these services from within controllers and models, 
but the services themselves are not part of the MVC framework and are available across the entire ASP.NET family of 
technologies.



Chapter 1 ■ Putting the ASP.NET Platform in Context 

5

I have drawn the ASP.NET services as being separate from the ASP.NET foundation, which makes them easier to 
describe but doesn’t accurately reflect the fact almost all of the services are integrated into the functionality provided 
by the foundation. This is important because the services rely on the way that the foundation handles HTTP requests 
in order to provide functionality to services, and it will start to make more sense once I get into the details of the ASP.
NET request life cycle in Part 2 of this book.

The ASP.NET platform is the combination of the foundation and the services, and using the ASP.NET platform in 
MVC framework applications is the topic of this book, as illustrated by Figure 1-3.

Figure 1-3.  The relationship between the ASP.NET platform and the MVC framework

Don’t worry if the relationship between the MVC framework, the application components, and the ASP.NET 
platform don’t make immediate sense. Everything will start to fall into place as you learn about how the platform 
works and the features it provides.

What Do You Need to Know?
This book is for developers who have experience in web application development using C# and the MVC framework. 
You should understand the nature of HTTP, HTML, and CSS and be familiar with the basic features of Visual Studio 
2013 (although I provide a quick primer for how I use Visual Studio in Chapter 2).

You will find this book hard to follow if you don’t have experience with the MVC framework, although there are 
plenty of examples that will help fill in the gaps. If you need to brush up on using the MVC framework, then I suggest my 
Pro ASP.NET MVC 5 for MVC development and The Definitive Guide to HTML5 for detailed coverage of HTML and CSS.

What’s the Structure of This Book?
This book is split into three parts, each of which covers a set of related topics.



Chapter 1 ■ Putting the ASP.NET Platform in Context 

6

Part 1: Getting Ready
Part 1 of this book provides the information you need to get ready for the rest of the book. It includes this chapter and 
a primer for the tools I use in this book and for the MVC pattern.

Part 2: The ASP.NET Platform Foundation
Part 2 of this book takes you through the foundation features of the ASP.NET platform, starting with the application 
and request life cycle and onto more advanced topics such as modules and handlers. This part of the book explains in 
detail how the ASP.NET platform handles requests and passes them to the MVC framework.

Part 3: The ASP.NET Services
Part 3 of this book describes the services that the ASP.NET platform provides to developers for use in MVC framework 
applications. These services range from hidden gems such as the configuration service to performance optimizations, 
such as data and content caching. I also describe the new ASP.NET Identity system, which is used to manage user 
authentication and authorization.

Are There Lots of Examples?
There are loads of examples. I demonstrate every important feature with code examples that you can add to your own 
projects, and I list the contents of every file in every example so that you get a complete picture of how each feature 
works. I use two code styles for examples. The first is when I list a complete file, as shown in Listing 1-1.

Listing 1-1.  A Complete Listing

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Users.Models;
 
namespace Users.Infrastructure {
    public class AppUserManager : UserManager<AppUser> {
 
        public AppUserManager(IUserStore<AppUser> store)
            : base(store) {
        }
 
        public static AppUserManager Create(
                IdentityFactoryOptions<AppUserManager> options,
                IOwinContext context) {
 
            AppIdentityDbContext db = context.Get<AppIdentityDbContext>();
            AppUserManager manager = new AppUserManager(new UserStore<AppUser>(db));
 
            return manager;
        }
    }
}
 



Chapter 1 ■ Putting the ASP.NET Platform in Context 

7

This listing is taken from Chapter 13—don’t worry about what it does at the moment. I usually start the chapter 
with complete listings; then, as I make changes to show you different features, I switch to partial listings, such as 
Listing 1-2.

Listing 1-2.  A Partial Listing

...
return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
...
 

This listing is also taken from Chapter 13 and shows a section of the file from Listing 1-1. I highlight the changes 
that I have made or the statements I want to draw your attention to. Using partial listings helps avoid endless 
repetitions of files that have small changes and lets me pack in more examples per page and per chapter.

Where Can You Get the Example Code?
All of the example code is contained in the text of this book, but you don’t have to type it in yourself. You can 
download a complete set of example projects, organized by chapter, without charge from Apress.com.

What Software Do You Need for This Book?
The most important software you need for this book is Visual Studio 2013, which contains everything you need to get 
started, including a built-in application server for running and debugging MVC applications, an administration-free 
edition of SQL Server for developing database-driven applications, tools for unit testing, and, of course, a code editor 
compiler and debugger.

There are several editions of Visual Studio, but I will be using the one that Microsoft makes available free of 
charge, called Visual Studio Express 2013 for Web. Microsoft adds some nice features to the paid-for editions of Visual 
Studio, but you will not need them for this book, and all of the figures that you see throughout this book have been 
taken using the Express edition, which you can download from www.microsoft.com/visualstudio/eng/products/
visual-studio-express-products. There are several versions of Visual Studio 2013 Express, each of which is used for 
a different kind of development. Make sure that you get the Web version, which supports ASP.NET applications.

I follow a specific approach to creating ASP.NET projects: I don’t use the predefined templates that Microsoft 
provides, preferring to explicitly add all of the packages that I require. This means more work is required to get set up, 
but the benefit is that you end up with a much better understanding of how an application fits together. I provide a 
primer in Chapter 2 that gives an example of what you can expect.

Tip■■   Visual Studio includes NuGet for downloading and installing software packages. I use NuGet throughout this 
book. So that you are sure to get the results that I demonstrate, I always specify the version of the NuGet package you 
require. If you are in doubt, download the source code for this book from www.apress.com, which contains complete 
projects for each chapter.

Preparing Visual Studio
Visual Studio Express contains all the features you need to create, test, and deploy an MVC framework application, but 
some of those features are hidden away until you ask for them. To enable all of the features, select Expert Settings from 
the Visual Studio Tools ➤ Settings menu.

http://apress.com/
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
http://www.apress.com/


Chapter 1 ■ Putting the ASP.NET Platform in Context 

8

Tip■■   Microsoft has decided that the top-level menus in Visual Studio should be all in uppercase, which means that the 
menu I just referred to is really TOOLS. I think this is rather like shouting, and I will capitalize menu names like Tools is 
here throughout this book.

The only other preparation is to disable the Browser Link feature when you create projects. Browser Link works 
by establishing a connection to the server that is used to receive notifications when the project contents change. 
In Part 2 of this book, I spend a lot of time talking about how requests are handled, and the extra requests sent by 
Browser Link skew the results. Disable Browser Link by clicking the button highlighted in Figure 1-4 and deselecting 
the Enable Browser Link menu item.

Figure 1-4.  Disabling Browser Link

Getting Google Chrome
For the majority of the examples in this book, I use Internet Explorer because I know that it is always available on 
Windows. There are occasions when I use Google Chrome, and you will need to download it from www.google.com/chrome 
if you want to re-create the examples.

I use Chrome for two main reasons. The first reason is because it supports simple emulation of mobile devices, 
which is useful in Chapter 7 when I show you how to detect device capabilities. The second reason is when I show you 
how to differentiate requests for services like caching in Chapter 12.

Summary
In this chapter, I outlined the content and structure of this book and set out the software that is required. The next 
chapter refreshes your basic skills with the MVC pattern and the MVC framework before I start digging into the details 
in Part 2.

http://www.google.com/chrome


9

Chapter 2

Pattern and Tools Primer

In this chapter, I provide a brief overview of the pattern that the MVC framework follows and demonstrate the process 
for creating a simple MVC project using Visual Studio 2013. The purpose of this chapter is to refresh your memory 
about the nature, objectives, and benefits of the MVC pattern and to show you the process I use to create the examples 
in this book.

This chapter isn’t a tutorial for the MVC framework. As I explained in Chapter 1, you already need to have a basic 
understanding of MVC framework development in order to benefit from the features and techniques I describe in  
this book. If you do not have experience with the MVC framework, then read Pro ASP.NET MVC 5, also from Apress, 
before continuing.

Understanding the MVC Pattern
The term Model-View-Controller has been in use since the late 1970s and arose from the Smalltalk project at Xerox 
PARC where it was conceived as a way to organize early GUI applications. Some of the details of the original MVC 
pattern was tied to Smalltalk-specific concepts, such as screens and tools, but the broader concepts are still applicable 
to applications—and are especially well-suited to web applications.

Interactions with an MVC application follow a natural cycle of user actions and view updates, where the view is 
assumed to be stateless. This fits nicely with the HTTP requests and responses that underpin a web application.

Further, the MVC pattern enforces a separation of concerns—the domain model and controller logic are 
decoupled from the user interface, which means that an MVC application will be split into at least three pieces:

•	 Models, which contain or represent the data that users work with. These can be simple view 
models, which just represent data being transferred between views and controllers; or they 
can be domain models, which contain the data in a business domain as well as the operations, 
transformations, and rules for manipulating that data.

•	 Views, which are used to render some part of the model as a user interface.

•	 Controllers, which process incoming requests, perform operations on the model, and select 
views to render to the user.

In the MVC framework, controllers are C# classes derived from the System.Web.Mvc.Controller class. Each 
public method in a class derived from Controller is an action method, which is associated with a URL defined 
through the ASP.NET routing system. When a request is sent to the URL associated with an action method, the 
statements in the controller class are executed in order to perform some operation on the domain model and then 
select a view to display to the client. Figure 2-1 shows the interactions between the controller, model, and view.



Chapter 2 ■ Pattern and Tools Primer

10

The ASP.NET MVC framework use a view engine, which is the component responsible for rendering a view to 
generate a response for the browser. The view engine for the MVC framework is called Razor, and you’ll see examples 
of Razor markup throughout this book. If you don’t like Razor, then you can select one of the many third-party view 
engines that are available (although I won’t be doing so in this book, not least because I find Razor to be robust and 
easy to work with).

Models are the definition of the universe your application works in. In a banking application, for example, the 
model represents everything in the bank that the application supports, such as accounts, the general ledger, and 
credit limits for customers—as well as the operations that can be used to manipulate the data in the model, such as 
depositing funds and making withdrawals from the accounts. The model is also responsible for preserving the overall 
state and consistency of the data—for example, making sure that all transactions are added to the ledger and that a 
client doesn’t withdraw more money than he is entitled to or more money than the bank has.

Models are also defined by what they are not responsible for: Models don’t deal with rendering UIs or processing 
requests; those are the responsibilities of views and controllers. Views contain the logic required to display elements 
of the model to the user—and nothing more. They have no direct awareness of the model and do not directly 
communicate with the model in any way. Controllers are the bridge between views and the model; requests come in 
from the client and are serviced by the controller, which selects an appropriate view to show the user and, if required, 
an appropriate operation to perform on the model.

The MVC framework doesn’t apply any constraints on the implementation of your domain model. You can create 
a model using regular C# objects and implement persistence using any of the databases, object-relational mapping 
frameworks, or other data tools supported by .NET.

Understanding the Benefits of the MVC Pattern
Each piece of the MVC architecture is well-defined and self-contained—this is the separation of concerns. The logic 
that manipulates the data in the model is contained only in the model; the logic that displays data is only in the view, 
and the code that handles user requests and input is contained only in the controller. This separation is at the heart of 
the benefits imparted by the MVC pattern—and by implication—the MVC framework.

The first benefit is scale, not in terms of how many users a web application can support but in terms of how 
complex it can be. Technologies such as Web Forms can be used to build complex applications, of course, but doing 
so requires detailed planning and attention to detail, and many projects end up as a morass of code that duplicates 
functionality and markup in multiple places, making extending or fixing the application difficult. It is possible to get 
into the same kind of mess with the MVC framework, but only by ignoring the MVC pattern. Most developers produce 
MVC projects that can scale in complexity without much difficulty and that are easy to maintain and extend (and if 
you do find yourself in a mess, the separation of concerns in an MVC framework application makes it easier to refactor 
the application back onto a stable footing).

The second benefit is unit testing. The module nature of the MVC framework makes it easy to perform unit 
testing, aided by the testing support provided by Visual Studio (although many other testing toolkits are available).

The third benefit is flexibility. The separation of concerns makes it relatively easy to respond to changes in 
requirements throughout the life of the application. This is a hard benefit to quantify and comes in part from the MVC 
pattern and in part from the convention-over-configuration approach that the MVC framework has adopted, but 
once the fundamental pieces of an application have been developed, it is a simple task to modify or rearrange them to 
respond to requests in new ways.

Request

Response
Presentation

Model

Persistence
(usually to a

relational
database)

HTTP

View
Controller Model

Figure 2-1.  The interactions in an MVC application



Chapter 2 ■ Pattern and Tools Primer

11

Note■■  I f there is one drawback of the MVC framework, it is that there is an initial investment of time required to create 
and arrange components in an application before you start seeing results. This is time well spent for large projects but 
not for quick and simple prototyping. In these situations, I still use Web Forms because it can be used to create simple 
applications in just a few minutes, despite lacking all of the long-term benefits that the MVC framework provides.

Creating the Example Project
In this section, I am going to walk through the process of creating a simple MVC framework application. Not only will 
this act as a quick primer for how Visual Studio supports MVC development, but it will also allow me to demonstrate 
the way that I like to create projects. Visual Studio is set up to add default template content to most projects, but I 
prefer to start with a minimal project and explicitly add the features I require.

Note■■   You will need to have downloaded and installed Visual Studio if you want to create this example yourself.  
See Chapter 1 for details.

To get started, I created a new Visual Studio project. Select File ➤ New Project to open the New Project dialog 
window. Navigate through the Templates section to select the Visual C# ➤ Web ➤ ASP.NET Web Application template 
and set the name of the project to SimpleApp, as shown in Figure 2-2.

Figure 2-2.  Creating the Visual Studio project



Chapter 2 ■ Pattern and Tools Primer

12

Click the OK button to move to the New ASP.NET Project dialog window. Ensure that the Empty option is selected 
and check the MVC option, as shown in Figure 2-3. Click the OK button, and Visual Studio will create a new project 
called SimpleApp.

Figure 2-3.  Selecting the ASP.NET project type

Creating the MVC Components
I need three components to create an MVC framework application: the model, the view, and the controller. Most 
projects start with the model, and for this example, I am going to create a simple model that is stored entirely in 
memory and is reset each time the application is restarted so that I don’t have to create and configure a database, 
although in a real project data persistence is usually required.

Right-click the Models folder in the Visual Studio Solution Explorer and select Add ➤ Class from the pop-up 
menu. Set the name to Votes.cs and click the Add button to create the class file. Edit the contents of the file to match 
those shown in Listing 2-1.

Listing 2-1.  The Contents of the Votes.cs File 

using System.Collections.Generic;
 
namespace SimpleApp.Models {
 
    public enum Color {
        Red, Green, Yellow, Purple
    };
 



Chapter 2 ■ Pattern and Tools Primer

13

    public class Votes {
        private static Dictionary<Color, int> votes = new Dictionary<Color, int>();
 
        public static void RecordVote(Color color) {
            votes[color] = votes.ContainsKey(color) ? votes[color] + 1 : 1;
        }
 
        public static void ChangeVote(Color newColor, Color oldColor) {
            if (votes.ContainsKey(oldColor)) {
                votes[oldColor]--;
            }
            RecordVote(newColor);
        }
 
        public static int GetVotes(Color color) {
            return votes.ContainsKey(color) ? votes[color] : 0;
        }
    }
}

Tip■■   You don’t have to type the example code to see the example projects in this book. The complete source code for 
every chapter is available in a free download from www.apress.com.

My example application will allow users to vote for their favorite color. This isn’t an exciting demonstration, but it 
will provide me with a simple application that I can use to demonstrate where the ASP.NET framework stops and the 
MVC framework starts when I extend the project in later chapters.

I have defined an enum of colors that users can vote for and a Votes class that records and reports on the votes 
for each color. The methods presented by the Votes class are static, and the data, which is stored in a dictionary 
collection, will be lost when the application is stopped or restarted.

Note■■   Using static data and methods in the Votes class means I don’t have to use a technique called dependency 
injection to provide instances of Votes to application components that require them. I wouldn’t use the static approach in 
a real project because dependency injection is a useful technique that helps create an easy-to-manage code base.  
See my Pro ASP.NET MVC 5 book for details of setting up and using dependency injection. For this chapter, I need a 
simple MVC application and don’t have to consider long-term maintenance or testing.

The controller is the component that defines the logic for receiving HTTP requests from the browser, updating 
the model, and selecting the view that will be displayed to the user.

An MVC framework controller provides one or more action methods that are targeted by individual URLs. The 
mapping between URLs and action methods is handled through the URL routing feature, and the default routing 
configuration specifies that requests to the default URL (the / URL) for the application are mapped to the Index action 
method in a controller called Home.

I am not going to get into the details of the URL routing system in this book, but the default configuration is 
sufficient for my example application as long as I create a controller with the right name.

http://www.apress.com/


Chapter 2 ■ Pattern and Tools Primer

14

Right-click the Controllers folder in the Visual Studio Solution Explorer and select Add ➤ Controller from the 
pop-up menu. Select MVC 5 Controller – Empty from the list of options and click the Add button. Set the name to 
be HomeController and click the Add button to create the Controllers/HomeController.cs file. Edit the new file to 
match Listing 2-2.

Listing 2-2.  The Contents of the HomeController.cs File

using System.Web.Mvc;
using SimpleApp.Models;
 
namespace SimpleApp.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            return View();
        }
 
        [HttpPost]
        public ActionResult Index(Color color) {
            Color? oldColor = Session["color"] as Color?;
            if (oldColor != null) {
                Votes.ChangeVote(color, (Color)oldColor);
            } else {
                Votes.RecordVote(color);
            }
            ViewBag.SelectedColor = Session["color"] = color;
            return View();
        }
    }
}

Note■■  T he URL routing system is actually part of the ASP.NET platform rather than the MVC framework, but I described 
URL routing in detail in my Pro ASP.NET MVC 5 book, and I am not going to repeat the information here.

One useful feature of controllers is the ability to define multiple action methods with the same name and then 
differentiate them through the use of attributes. In the listing, I have applied the HttpPost attribute to the Index action 
method that takes an argument, which tells the MVC framework that the method should be used to handle HTTP 
POST requests. HTTP GET requests will be handled by the Index method that takes no arguments.

The goal of an action method is to update the model and select a view to be displayed to the user. I don’t need to 
update my model when dealing with GET requests, so I just return the result from calling the View method, which selects 
the default view associated with the action method. I need to update the vote tally when dealing with POST requests, either 
by registering a new vote or, if the user has voted already, by changing an existing vote. I keep track of whether a user has 
voted through the Session property, which allows me to maintain state data for the duration of the user’s browser session.

The final component is the view, which generates the HTML that is displayed to the user as the response to an 
HTTP request. Both of the action methods in the Home controller call the View method without any arguments, which 
tells the MVC framework to look for a view whose name matches the action method name. The MVC framework will 
search for an Index view with different file extensions and in different folder locations, one combination of which is  
/Views/Home/Index.cshtml. The Views folder is the conventional location of views in an MVC application, the Home 
folder is the conventional location for views used by the Home controller, and the .cshtml file extension specifies that 
the view contains C# Razor annotations.



Chapter 2 ■ Pattern and Tools Primer

15

To create the view for the example application, right-click either of the action methods in the HomeController 
class and select Add View from the pop-up menu to open the Add View dialog window. Set the Name field to Index, 
set the Template field to Empty (without model), and ensure that the Create as a partial view and Use a layout page 
options are not checked, as shown in Figure 2-4.

Figure 2-4.  Creating the view

Click the Add button, and Visual Studio will create a file called Index.cshtml in the Views/Home folder. Edit this 
file so that it matches Listing 2-3.

Listing 2-3.  The Contents of the Index.cshtml File 

@using SimpleApp.Models
@{ Layout = null; }
 
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Vote</title>
</head>
<body>
    @if (ViewBag.SelectedColor == null) {
        <h4>Vote for your favorite color</h4>
    } else {
        <h4>Change your vote from @ViewBag.SelectedColor</h4>
    }
 



Chapter 2 ■ Pattern and Tools Primer

16

    @using (Html.BeginForm()) {
        @Html.DropDownList("color",
                new SelectList(Enum.GetValues(typeof(Color))), "Choose a Color")
        <div>
            <button type="submit">Vote</button>
        </div>
    }
    <div>
        <h5>Results</h5>
        <table>
            <tr><th>Color</th><th>Votes</th></tr>
            @foreach (Color c in Enum.GetValues(typeof(Color))) {
                <tr><td>@c</td><td>@Votes.GetVotes(c)</td></tr>
            }
        </table>
    </div>
</body>
</html>
 

An MVC framework view uses a combination of standard HTML elements and Razor annotations to dynamically 
generate content. I am using a single view to response to HTTP GET and POST requests, so some of the Razor 
annotations adapt the content to reflect whether the user has already voted; the other annotations generate HTML 
elements based on the enumeration of colors and the total number of votes.

Testing the Application
Once you have created the three components in the previous section, you can test them by selecting Start Debugging 
from the Visual Studio Debug menu. Visual Studio will open a browser window and navigate to the application URL, 
allowing you to select a color and vote. Figure 2-5 illustrates the voting process.

Figure 2-5.  Using the application



Chapter 2 ■ Pattern and Tools Primer

17

Note■■  I  refer to the Visual Studio Debug menu, but it is really the DEBUG menu because Microsoft has adopted an  
all-capitals policy to menu names. I think this is an odd thing to do, and I will refer to menu items in mixed case in this book.

Adding Packages to the Project
As I explained earlier in the chapter, I prefer to create a basic Visual Studio project and then explicitly add the 
features I need. This is less work than you might expect because Visual Studio supports NuGet, which is a package 
manager that provides access to a wide catalog of packages for .NET application development. The integration into 
Visual Studio allows for the automatic downloading, installation, and dependency management of packages and has 
transformed the process of using standard libraries in .NET development.

The NuGet package catalog, which you can browse at www.nuget.org, is extensive and includes many popular 
open source web application packages. Microsoft has given tacit support to some of these packages by including them 
in the Visual Studio templates for new ASP.NET projects, but you can use NuGet directly to install these packages 
without getting the rest of the (generally useless) template content.

One package that Microsoft has adopted with the MVC 5 release is Bootstrap, which is an excellent CSS and 
JavaScript library for styling HTML that grew out of a project at Twitter. I have absolutely no design skills at all, and I 
like using Bootstrap because it lets me style content during the early stages of development without making too much 
of a mess. I like to work with professional designers on real projects (and I recommend you do the same), but in this 
book I’ll use Bootstrap to make some the examples easier to understand and to highlight specific results and features.

Note■■   Bootstrap is only one of the packages that Microsoft has adopted, and I only briefly describe its use in this 
chapter. For full details of client-side development for MVC framework projects, see my Pro ASP.NET MVC 5 Client  
Development book, which is published by Apress.

I’ll show you how I use Bootstrap later in this chapter, but in this section I will show you how to use the Visual 
Studio support for NuGet to download and install the Bootstrap package.

Note■■   Bootstrap isn’t directly related to the MVC Framework or the ASP.NET platform. In this chapter I use it to  
demonstrate how to install a NuGet package and in later chapters to make the examples easier to follow. If you are 
familiar with NuGet and Bootstrap (or are not interested in either), then you can move directly to Part 2 of this book, where 
I turn to the details of the ASP.NET platform.

Visual Studio provides a graphical interface that lets you navigate through the package catalog, but I prefer to use 
the console feature that accepts NuGet commands directly in Visual Studio. Open the console by selecting Package 
Manager Console from the Tools ➤ Library Package Manager menu and enter the following command:

Install-Package -version 3.0.3 bootstrap

The Install-Package command instructs Visual Studio to add a new package to the project. When you press the 
Enter key, Visual Studio will download and install the Bootstrap package and any other packages that it depends on. 
Bootstrap depends only on the popular jQuery library, which Visual Studio added automatically when setting up the 
project, along with some additional JavaScript files that use jQuery to handle form validation.

http://www.nuget.org/


Chapter 2 ■ Pattern and Tools Primer

18

Tip■■  T he -version argument allows me to specify a particular version of the package, and version 3.0.3 is the  
current version of Bootstrap available as I write this. The latest version of the package will be installed if you omit the 
–version argument when using the Install-Package command. I use specific versions of packages in this book to ensure 
that you are able to re-create the examples.

The Bootstrap NuGet package adds some CSS files to the Content folder (which is the home of static content in 
an MVC framework application) and some JavaScript files to the Scripts folder. Bootstrap mainly works through CSS 
files, but there are some JavaScript enhancements for more complex interactions. (The Bootstrap package also creates 
a fonts folder. Not all open source libraries fit neatly into the ASP.NET project structure, so occasionally you will see 
artifacts like this to support assumptions made by the library about the layout of its files.)

Using Bootstrap
I don’t want to get into too much detail about Bootstrap because it isn’t the topic of this book, and I will be using it 
only to make the examples easier to understand. To demonstrate the basic Bootstrap features, I have applied some of 
the most useful styles to the Views/Home/Index.cshtml file, as shown in Listing 2-4.

Listing 2-4.  Applying Bootstrap Styles to the Index.cshtml File

@using SimpleApp.Models
@{ Layout = null; }
 
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Vote</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
</head>
<body class="container">
    <div class="panel panel-primary">
        @if (ViewBag.SelectedColor == null) {
            <h4 class="panel-heading">Vote for your favorite color</h4>
        } else {
            <h4 class="panel-heading">Change your vote from @ViewBag.SelectedColor</h4>
        }
 
        <div class="panel-body">
 
            @using (Html.BeginForm()) {
                @Html.DropDownList("color",
                        new SelectList(Enum.GetValues(typeof(Color))), "Choose a Color",
                            new { @class = "form-control" })



Chapter 2 ■ Pattern and Tools Primer

19

                <div>
                    <button class="btn btn-primary center-block"
                         type="submit">Vote</button>
                </div>
            }
 
        </div>
    </div>
 
    <div class="panel panel-primary">
        <h5 class="panel-heading">Results</h5>
        <table class="table table-condensed table-striped">
            @foreach (Color c in Enum.GetValues(typeof(Color))) {
                <tr><td>@c</td><td>@Votes.GetVotes(c)</td></tr>
            }
        </table>
    </div>
</body>
</html>
 

The first changes in the view are the addition of link elements to import the bootstrap.min.css and  
bootstrap-theme.min.css files into the HTML document. Bootstrap includes a set of base CSS classes that are 
supplemented by replaceable themes. The base classes are in the bootstrap.min.css file, and I have used the default 
theme that is defined by the bootstrap-theme.min.css file and that is installed by the NuGet package.

Tip■■  I  am using the minified versions of the Bootstrap files in this example, which have been processed to remove 
whitespace, comments, and other optional content. Minified files are used in deployment to reduce bandwidth  
requirements or (as here) when using third-party packages that you do not need to debug. The NuGet package also 
installs the human-readable files if you want to take a look at how Bootstrap works.

The other changes apply the Bootstrap CSS classes  to style the HTML content that the view will generate. 
Bootstrap includes a lot of CSS classes, and I am only using some of the most basic, but they are representative of the 
examples you will see throughout this book. Figure 2-6 shows the effect that the changes in Listing 2-4 have on the 
application, which will provide some useful context.



Chapter 2 ■ Pattern and Tools Primer

20

Note■■   Bootstrap functionality is largely provided through CSS classes but is supplemented with some JavaScript  
additions. I don’t need to use the JavaScript features for this example and am only using the CSS classes.

I am not going to describe the individual Bootstrap classes in detail, but I have provided a quick summary of 
those that I have used in Listing 2-4 in Table 2-1 so that you can see how I created the effect shown in the figure.

Figure 2-6.  The effect of using Bootstrap on the example application

Table 2-1.  The Bootstrap Classes Applied to the Index.cshtml File

Name Description

Btn Styles button or a elements as Bootstrap buttons. This class is usually applied in conjunction 
with a button theme class, such as btn-primary.

btn-primary Used in conjunction with the btn class to apply a theme color to a button. The other button 
theme classes are btn-default, btn-success, btn-info, btn-warning, and btn-danger.

center-block Centers elements. I used this class in the view to position the Vote button.

container Centers the contents of the element it is applied to. In the listing, I applied this class to the body 
element so that all of the HTML content is centered.

form-control Styles a Bootstrap form element. There is only one form element in the listing, but this class 
usefully sizes and aligns elements to present a form.

(continued)



Chapter 2 ■ Pattern and Tools Primer

21

The Bootstrap classes are simple to use and can quickly create a consistent layout for the HTML in a view. For the 
most part, I applied the classes to the static HTML elements in the view in Listing 2-4, but I have also used a Bootstrap 
class with the HTML helper method that generates the select element from the enumeration of color values, like this:
 
...
@Html.DropDownList("color", new SelectList(Enum.GetValues(typeof(Color))),
    "Choose a Color", new { @class = "form-control" })
...
 

The HTML helpers are convenience methods used in Razor views to generate HTML elements from model 
data. All of the helper methods are overridden so that there is a version that accepts an object that is used to apply 
attributes to the elements that are created. The properties of the object are used for the attribute names, and the 
values for the attributes are taken from the property values. For the DropDownList helper in the example, I have 
passed in a dynamic object that defines a class property that applies the Bootstrap form-control class to the select 
element that the helper creates.

Tip■■  I  have to prefix the property name with @ because class is a C# keyword. The @ symbol is a standard C# feature 
that allows the use of keywords without confusing the compiler.

Summary
In this chapter, I started by refreshing your memory as to the nature and purpose of the MVC pattern. Understanding 
the MVC pattern will provide some useful context when considering the design and application of the platform 
features that I describe in Part 2 of this book.

I also showed you how to create a simple MVC framework application using Visual Studio. Visual Studio is a 
feature-rich and flexible development tool, and there are many choices about how projects are created and built. As this 
chapter demonstrated, I prefer a basic starting point from which I can add the functionality and features that I require, 
such as the Bootstrap library that I added to the example project with NuGet and that I briefly described. In Part 2 of this 
book, I begin to describe the ASP.NET platform in detail, starting with the two life cycles of an ASP.NET application.

Name Description

panel Groups related content together. Used with the panel-body and panel-heading classes to 
denote the sections of the panel and, optionally, with a class that applies a theme color, such  
as panel-primary.

panel-body Denotes the content section of a panel.

panel-heading Denotes the heading section of a panel.

panel-primary Used in conjunction with the panel class to apply a theme color to a panel. The other theme 
classes are panel-default, panel-success, panel-info, panel-warning, and panel-danger.

table Styles a Bootstrap table.

table-condensed Used in conjunction with the table class to create a compact table layout.

table-striped Used in conjunction with the table class to color alternate rows in a table.

Table 2-1.  (continued)



Part 2

The ASP.NET Platform Foundation



25

Chapter 3

The ASP.NET Life Cycles

The ASP.NET platform defines two important life cycles that underpin the MVC framework. The first is the application 
life cycle, which tracks the life of a web application from the moment it starts to the moment it is terminated. The 
second is the request life cycle, which defines the path that an HTTP request follows as it moves through the ASP.NET 
platform from the point at which the initial request is received until the response is sent. In this chapter, I describe 
both life cycles and the context objects that the ASP.NET platform uses to describe them and the overall state of the 
application. Table 3-1 summarizes the chapter.

Table 3-1.  Chapter Summary

Problem Solution Listing

Perform actions when the application starts 
and stops.

Use the special Application_Start and  
Application_End methods in the global application class.

1–3

Monitor or modify a request as it is processed. Handle the events that define the request life cycle. 4–8

Get information about the state of the 
application, the current request, or the 
response associated with it.

Use the properties defined by the context objects. 9–11, 13

Preparing the Example Project
For this chapter, I am going to continue use the SimpleApp project I created in Chapter 2 and that allows the user to 
vote for a color. You will find that most of the MVC framework applications that I build in this book are pretty simple 
because my focus is on the ASP.NET platform.

Tip■■   Don’t forget that you can download the source code for all the examples in this book for free from www.apress.com.

The ASP.NET Application Life Cycle
As an MVC framework developer, you are used to starting an application and letting it handle requests, using Visual 
Studio during development or on a production platform after deployment. At some later time, the application is 
stopped—perhaps for maintenance or an upgrade—and requests are no longer processed.

http://www.apress.com/


Chapter 3 ■ The ASP.NET Life Cycles

26

These two moments—the point at which an application starts and stops receiving requests—define the 
application life cycle, the management of which provides the most fundamental features for ASP.NET web 
applications. ASP.NET provides notifications when the application starts and when it is stopped in a controlled 
way, and these notifications are the topic of this section of this chapter. Table 3-2 puts the application life-cycle 
notifications in context.

Table 3-2.  Putting the Application Life-Cycle Notification in Context

Question Answer

What is it? The application life-cycle notifications allow you to perform actions when the application 
starts and when it is shut down in a controlled way.

Why should I care? The notifications are useful if you have one-off configuration tasks or if you need to release 
resources when the application is stopped. The most common use of the application life 
cycle by MVC framework developers is to configure a dependency injection container.

How is it used by the 
MVC framework?

The MVC framework uses the application life cycle to perform configuration tasks that affect 
all requests, such as setting up routes, areas, and content bundles.

Understanding the Application Life Cycle
The life cycle of an ASP.NET application begins the moment the application is started and continues while HTTP 
requests are received from clients and processed to generate responses. It includes matching requests to controllers 
and actions and rendering content from Razor views. The life cycle ends when the application is stopped.

The ASP.NET platform provides notifications of the two stages of the life cycle through methods defined by the 
global application class. The global application class has been around since the earliest versions of ASP.NET and 
consists of two files: Global.asax and Global.asax.cs.

Strictly speaking, the Global.asax file is the global application class, and the Global.asax.cs file is the 
associated code-behind file. This is the classic Web Forms approach to splitting declarative and programmatic code 
and is an artifact of the origins of ASP.NET. The Global.asax file used to be more important in ASP.NET applications, 
but it is just there for compatibility these days, even in Web Forms projects. Listing 3-1 shows the content of the 
Global.asax file from the example project, although you will never need to edit this file for an MVC framework 
project.

Listing 3-1.  The Contents of the Global.asax File

<%@ Application Codebehind="Global.asax.cs" Inherits="SimpleApp.MvcApplication" Language="C#" %> 

Tip■■  T o see the contents of this file, right-click Global.asax in the Solution Explorer and select View Markup from the 
pop-up menu.

This is an example of a Web Forms directive that tells ASP.NET that the associated code file is called  
Global.asax.cs and that it is written in C#. (Remember that ASP.NET applications can be written in any .NET 
language and that Visual Basic is still widely used.)



Chapter 3 ■ The ASP.NET Life Cycles

27

The Global.asax file may be a mildly interesting artifact left over from earlier versions of ASP.NET, but for this 
chapter it is the Global.asax.cs file that is important. The role of these files has gradually changed as ASP.NET has 
matured, and now the term global application class is usually used to refer to the Global.asax.cs file to the extent 
that when you double-click Global.asax in the Solution Explorer, it is the Global.asax.cs file that opens in the editor.

Listing 3-2 shows the contents of the Global.asax.cs file that Visual Studio created for the example project.

Listing 3-2.  The Contents of the Global.asax.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
 
namespace SimpleApp {
    public class MvcApplication : System.Web.HttpApplication {
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
        }
    }
}
 

The default global application class is called MvcApplication and is derived from the  
System.Web.HttpApplication class. You’ll see many more classes from the System.Web namespace in this  
book because it is the home of the bulk of the ASP.NET platform functionality.

The MvcApplication class is instantiated by the ASP.NET framework, and the methods it defines are called at key 
moments in the application life cycle (and, as you’ll learn, in the request life cycle).

The default implementation of the MvcApplication class contains only one method, called Application_Start, 
but there is another method available, and I describe them both in the following sections.

Receiving Notifications When the Application Starts and Ends
The global application class supports two special methods that define the start and end of the application life cycle, as 
described by Table 3-3.

Table 3-3.  The Global Application Class for Application Life-Cycle Notifications

Name Description

Application_Start() Called when the application is started

Application_End() Called when the application is about to be terminated

The Application_Start method is called when the application is first started and provides an opportunity to 
perform one-off configuration tasks that affect the entire application. In Listing 3-2, you can see that Visual Studio 
has added statements to the Application_Start method that set up MVC areas and URL routes. When I created the 
example project in Chapter 2, I selected the option for the minimal initial project content, but additional statements 
would have been added to the Application_Start method if I had selected one of the other template options.



Chapter 3 ■ The ASP.NET Life Cycles

28

The Application_End method is called just before the application is terminated and is an opportunity to release 
any resources that the application maintains and to generally tidy up. The usual reason given for using this method 
is to release persistent database connections, but most modern web applications don’t manage connections directly, 
and I rarely find it necessary to implement the Application_End method in my own projects. Databases are pretty 
good at managing their own connections these days, which is good because the Application_End method is called 
only when the application is shut down in an orderly manner. You can’t rely on the method being called if the server 
fails or there is some other kind of sudden, unexpected problem such as a power outage.

I refer to these methods as being special because they are implemented in an odd way. These methods are not 
defined by the base for the global application class (which is System.Web.HttpApplication), so you don’t have to use 
the override keyword to implement them. In fact, the ASP.NET framework uses reflection to look for the methods 
by name. You won’t receive an error if you mistype the method names; ASP.NET just assumes you don’t want to be 
notified when the application starts or stops. For this reason, it is important to ensure that you test that your code is 
being called, which I demonstrate later in this chapter.

Tip■■  Y ou will sometimes see the Application_Start and Application_End methods defined with object Object 
and EventArgs arguments, following the convention for a C# event handler method. This is optional, and the ASP.NET 
framework is able to locate and call these methods with or without these arguments.

Calls to the Application_Start and Application_End methods bookend the life cycle of the application, and 
between those method calls ASP.NET receives and processes requests, as described in Figure 3-1. I’ll return to this 
diagram as I detail the request life cycle and show you how everything fits together.

Figure 3-1.  The application life cycle



Chapter 3 ■ The ASP.NET Life Cycles

29

Testing the Start and Stop Notifications
You can use the Application_Start and Application_End methods directly in your applications to perform one-off  
startup and shutdown activities, just as the MVC framework does. In this section, I’ll show you how to use the 
debugger to ensure that the methods are being called—something that is important when your custom code doesn’t 
work the way you expect.

The simplest way to check that these methods are being called is to use the Visual Studio debugger. In Listing 3-3 
you can see how I have added calls to the static System.Diagnostics.Debugger.Break method to the  
Application_Start and Application_End methods, which has the same effect as setting a breakpoint using the 
Visual Studio code editor, but with the benefit of ensuring that you will get the same result I describe here if you  
re-create this example.

Listing 3-3.  Breaking the Debugger in the Global.asax.cs File 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
 
namespace SimpleApp {
    public class MvcApplication : System.Web.HttpApplication {
 
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
            System.Diagnostics.Debugger.Break();
        }
 
        protected void Application_End() {
            System.Diagnostics.Debugger.Break();
        }
    }
}
 

I have added a call to the Break method in the existing Application_Start method and added the  
Application_End method (which contains only a call to Break since my application doesn’t have any cleanup code 
and none is required by the MVC framework).

Testing the Start Notification
Testing the Application_Start method is simple. Select Start Debugging from the Visual Studio Debug menu, and 
Visual Studio will open a browser window. The ASP.NET framework begins initializing the application, creates an 
instance of the global application class, discovers the Application_Start method, and invokes it, which leads to the 
Break method being called. The execution of the application is halted, and control is passed to the debugger, as shown 
in Figure 3-2.



Chapter 3 ■ The ASP.NET Life Cycles

30

Select Continue from the Visual Studio Debug menu, and execution of the application will resume. The request 
from the browser is processed, generating an HTML response that allows the user to vote for a color.

Testing the Stop Notification 
Testing the Application_End method is a little trickier because selecting Stop Debugging detaches the debugger 
from the application before the Application_End method is called. The browser window is closed, the debugger is 
terminated, and Visual Studio returns to its default state—but the Debugger.Break method isn’t invoked.

To test the code in the Application_End method, you must work with IIS Express directly, rather than through 
Visual Studio. IIS Express is a cut-down version of the IIS application server included with Visual Studio and is used to 
run ASP.NET applications during development.

Execution of the application will continue, and the time and day of the week will be displayed by the browser.
Locate the IIS Express icon on the Windows taskbar and right-click to make the pop-up menu appear. You will 

see a menu item for the SimpleApp project, and when you select it, you will see a Stop Site menu item, as shown  
in Figure 3-3.

Figure 3-2.  Control is passed to the debugger when the Application_Start method is called



Chapter 3 ■ The ASP.NET Life Cycles

31

Figure 3-3.  Stopping an application using IIS Express

When you select Stop Site, IIS Express will stop the application, and as part of this process, the Application_End 
method will be called. For my example, this means the Debugger.Break call is executed, as shown in Figure 3-4.

Figure 3-4.  Testing the code in the Application_End method

The ASP.NET Request Life Cycle
The global application class is also used to track the life cycle of individual requests, allowing you to follow each 
request as it passes through the ASP.NET platform into the MVC framework. The ASP.NET framework creates 
instances of the MvcApplication class defined in the Global.asax.cs file and uses the events it defines to shepherd 
the request through until the point where the response is generated and sent back to the browser. These events are 
not just for use by the application developer; they are used by the ASP.NET framework and the MVC framework to 
perform request handling (this will become clearer as I dig deeper into the detail). Table 3-4 puts the request life cycle 
in context.



Chapter 3 ■ The ASP.NET Life Cycles

32

Table 3-4.  Putting the Request Life Cycle in Context

Question Answer

What is it? The request life cycle is described by a series of events that describe the progress of a request 
from when it is received through until the response is sent.

Why should I care? The events are used when creating your own modules and handlers (which I introduce later 
in this chapter and describe properly in Chapters 4 and 5). You can also use these events to 
debug complex problems caused by interactions between ASP.NET components.

How is it used by the 
MVC framework?

The MVC framework includes a module and a handler. The module blocks requests for view 
files, and the handler is the component that locates the controller and action method that will 
process the request and renders the view that the action method selects.

Table 3-5.  The Request Life Cycle Events Defined by the Global Application Class

Name Description

BeginRequest This is triggered as the first event when a new request is received.

AuthenticateRequest
PostAuthenticateRequest

The AuthenticateRequest event is triggered to identify the user who has 
made the request. When all of the event handlers have been processed, 
PostAuthenticateRequest is triggered.

AuthorizeRequest AuthorizeRequest is triggered to authorize the request. When all of the event 
handlers have been processed, PostAuthorizeRequest is triggered.

ResolveRequestCache
PostResolveRequestCache

ResolveRequestCache is triggered to resolve the request from cached data. I 
describe the caching features in Chapters 11 and 12. When the event handlers 
have been processed, PostResolveRequestCache is triggered.

MapRequestHandler
PostMapRequestHandler

MapRequestHandler is triggered when the ASP.NET framework wants to locate a 
handler for the request. I introduce handlers later in this chapter and cover them 
in depth in Chapter 5. The PostMapRequestHandler event is triggered once the 
handler has been selected.

AcquireRequestState
PostAcquireRequestState

AcquireRequestState is triggered to obtain the state data associated with the 
request (such as session state). When all of the event handlers are processed, 
PostAcquireRequestState is triggered. I explain the different kinds of state data 
in Chapter 10.

PreRequestHandlerExecute
PostRequestHandlerExecute

These events are triggered immediately before and immediately after the handler 
is asked to process the request.

ReleaseRequestState
PostReleaseRequestState

ReleaseRequestState is triggered when the state data associated with the request 
is no longer required for request processing. When the event handlers have been 
processed, the PostReleaseRequestState event is triggered.

Understanding the Request Life Cycle
The Application_Start and Application_End methods are not called on the MvcApplication instances that  
ASP.NET creates to handle requests. Instead, the ASP.NET framework triggers the sequence of events described in  
Table 3-5. These events describe the request life cycle.

(continued)



Chapter 3 ■ The ASP.NET Life Cycles

33

Table 3-5.  (continued)

Name Description

UpdateRequestCache This event is triggered so that modules responsible for caching can update their 
state. I introduce the role of modules later in this chapter and describe them in depth 
in Chapter 4. I describe the built-in support for caching in Chapters 11 and 12.

LogRequest
PostLogRequest

This event is triggered to provide an opportunity for details of the request to be 
logged. When all of the event handlers have been processed, PostLogRequest is 
triggered.

EndRequest This event is triggered when the request has been processed and the response is 
ready to be sent to the browser.

PreSendRequestHeaders
PreSendRequestContent

This event is triggered just before the HTTP headers are sent to the browser.

This event is triggered after the headers have been sent but before the content is 
sent to the browser.

Error This event is triggered when an error is encountered; this can happen at any point 
in the request process. See Chapter 6 for details about error handling.

THE LIFE OF A REQUEST LIFE CYCLE HTTPAPPLICATION OBJECT

The ASP.NET framework will create multiple instances of the MvcApplication class to process requests, and 
these instances can be reused so that they process several requests over their lifetime. The ASP.NET framework 
has complete freedom to create MvcApplication instances as and when they are required and to destroy them 
when they are no longer needed. This means your global application class must be written so that multiple 
instances can exist concurrently and that these instances can be used to process several requests sequentially 
before they are destroyed. The only thing you can rely on is that each instance will be used to process one 
request at a time, meaning you have to worry only about concurrent access to data objects that are shared  
(I show you an example of this issue when I introduce application-wide state data in Chapter 10).

The ASP.NET framework triggers these events to chart the path of a request through the processing life cycle. You 
can handle these events in the global application class, in a module, or in a handler. I introduce modules and handlers 
in the following section and describe them in depth in Chapters 4 and 5.

Understanding Modules and Handlers
In the following sections, I show you how to respond to the request life-cycle events directly in the global application 
class. This is a good start for exploring the life-cycle events, but it is suitable for only the simplest of interactions 
with requests. Any serious request handling functionality tends to consume a number of life-cycle events, which 
means that the global application class quickly becomes a morass of code that handles the same events to handle 
requests in different ways. The ASP.NET framework deals with this by supporting modules, which are self-contained 
classes that receive the life-cycle events and can monitor and manipulate requests. Many of the most important ASP.
NET platform services rely on the module functionality to prepare a request early in its life cycle. Examples are the 
state data and security services, which include modules that respond to events such as AcquireRequestState and 
AuthenticateRequest to add data to a request before it is handled by the MVC framework. Modules can interact with 
requests—and the associated responses—at any point in the life cycle, and I describe them in detail in Chapter 4.



Chapter 3 ■ The ASP.NET Life Cycles

34

The ASP.NET framework also supports a component called a handler. Handlers are responsible for generating a 
response for a request. The handler for the MVC framework is the component responsible for locating a controller and 
action method to service a request and rendering the view that the action method specifies. The ASP.NET framework 
supports multiple handlers, which is why it is possible to mix and match development frameworks such as MVC, Web 
API, and Web Forms within the same application. The handler is linked to four of the request life-cycle events. The 
MapRequestHandler and PostMapRequestHandler events are triggered before and after a handler is selected for the 
request, and the PreRequestHandlerExecute and PostRequestHandlerExecute events are triggered before and after 
the handler is asked to generate a response for the request. I describe how handlers work in detail in Chapter 5.

The reason that I have introduced modules and handlers in this chapter is because doing so allows me to 
illustrate the request life cycle more completely, as shown in Figure 3-5.

Figure 3-5.  Adding the request handling process to the life-cycle diagram

Don’t worry if this seems complex; it will start to make sense as I explain how these events are handled and as 
you see how various ASP.NET platform services are implemented.

Notice that the global application class is instantiated by both the application and request life cycles. Not only 
does the ASP.NET framework create multiple instances to service parallel requests, but it also creates separate 
instances to support each life cycle. You will see the practical impact of this in the “Handling Property Exceptions” 
section later in this chapter.

Handling Request Life-Cycle Events Using Special Methods
To handle these events in the global application class, you create a method with a name that starts with Application_, 
followed by the event name, such as Application_BeginRequest, for example. As with the Application_Start 
and Application_End methods, the ASP.NET framework finds the methods and invokes them when the event they 
correspond to is triggered. In Listing 3-4, you can see how I have updated the global application class so it handles 
some of the events in the table (and removed the statements that cause the debugger to break).



Chapter 3 ■ The ASP.NET Life Cycles

35

Listing 3-4.  Handling Request life-Cycle Events in the Global.asax.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
 
namespace SimpleApp {
    public class MvcApplication : System.Web.HttpApplication {
 
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
        }
 
        protected void Application_BeginRequest() {
            RecordEvent("BeginRequest");
        }
 
        protected void Application_AuthenticateRequest() {
            RecordEvent("AuthenticateRequest");
        }
 
        protected void Application_PostAuthenticateRequest() {
            RecordEvent("PostAuthenticateRequest");
        }
 
        private void RecordEvent(string name) {
            List<string> eventList = Application["events"] as List<string>;
            if (eventList == null) {
                Application["events"] = eventList = new List<string>();
            }
            eventList.Add(name);
        }
    }
}
 

I have defined a method called RecordEvent that accepts the name of an event and stores it using one of the 
ASP.NET state management features. I describe these features in detail in Chapter 10, but the one I have used in this 
example—accessed via the Application property of the HttpApplication class—stores data in a way that makes it 
available throughout the application.

Caution■■   Don’t use the Application property without reading Chapter 10. I am using this feature without taking 
precautions that are essential in real projects.



Chapter 3 ■ The ASP.NET Life Cycles

36

I call the RecordEvent method from three other methods I added to the global application class. These events  
will be called when the BeginRequest, AuthenticateRequest, and PostAuthenticateRequest events are triggered.  
I don’t have to explicitly register these methods as event handlers; the ASP.NET framework locates and invokes these 
methods automatically.

Displaying the Event Information
To display information about the events that my code receives, I need to make changes to the Home controller and its 
Index view. In Listing 3-5, you can see how I retrieve the event state data and pass it to the view as the model object in 
the Home controller.

Listing 3-5.  Getting the Event Information in the Controllers/HomeController.cs File

using System.Web.Mvc;
using SimpleApp.Models;
 
namespace SimpleApp.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            return View(HttpContext.Application["events"]);
        }
 
        [HttpPost]
        public ActionResult Index(Color color) {
            Color? oldColor = Session["color"] as Color?;
            if (oldColor != null) {
                Votes.ChangeVote(color, (Color)oldColor);
            } else {
                Votes.RecordVote(color);
            }
            ViewBag.SelectedColor = Session["color"] = color;
            return View(HttpContext.Application["events"]);
        }
    }
}
 

To access the data I stored in the global application class, I have to use the HttpContext.Application 
property, which I describe later in this chapter as part of the context objects that the ASP.NET framework provides 
and whose functionality I describe in Chapter 10. In Listing 3-6, you can see how I have updated the Razor view 
associated with the controller so that details of the events are displayed in the browser.

Listing 3-6.  Displaying the Event Information in the Views/Home/Index.cshtml File

@using SimpleApp.Models
@model List<string>
@{ Layout = null; }
 
<!DOCTYPE html>
<html>



Chapter 3 ■ The ASP.NET Life Cycles

37

<head>
    <meta name="viewport" content="width=device-width" />
    <title>Vote</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
</head>
<body class="container">
    <div class="panel panel-primary">
        @if (ViewBag.SelectedColor == null) {
            <h4 class="panel-heading">Vote for your favorite color</h4>
        } else {
            <h4 class="panel-heading">Change your vote from @ViewBag.SelectedColor</h4>
        }
 
        <div class="panel-body">
 
            @using (Html.BeginForm()) {
                @Html.DropDownList("color",
                        new SelectList(Enum.GetValues(typeof(Color))), "Choose a Color",
                            new { @class = "form-control" })
                <div>
                    <button class="btn btn-primary center-block"
                            type="submit">
                        Vote
                    </button>
                </div>
            }
 
        </div>
    </div>
 
    <div class="panel panel-primary">
        <h5 class="panel-heading">Results</h5>
        <table class="table table-condensed table-striped">
            @foreach (Color c in Enum.GetValues(typeof(Color))) {
                <tr><td>@c</td><td>@Votes.GetVotes(c)</td></tr>
            }
        </table>
    </div>
 
    <div class="panel panel-primary">
        <h5 class="panel-heading">Events</h5>
        <table class="table table-condensed table-striped">
            @foreach (string eventName in Model) {
                <tr><td>@eventName</td></tr>
            }
        </table>
    </div>
</body>
</html>
 



Chapter 3 ■ The ASP.NET Life Cycles

38

The list of event names is passed to the view as the model object, and I use a Razor foreach loop to generate 
rows in an HTML table element. The result is that the view generates HTML that describes the events that have been 
recorded by the global application class, as shown in Figure 3-6.

Figure 3-6.  Displaying details of life-cycle events

Tip■■  T his technique can be used only for events up to PreRequestHandlerExecute in the sequence shown in  
Table 3-5. This is because the action method in the controller is called between the PreRequestHandlerExecute and 
PostRequestHandlerExecute events and so subsequent events are triggered after the response has been produced.



Chapter 3 ■ The ASP.NET Life Cycles

39

Handling Request Life-Cycle Events Without Special Methods
The HttpApplication class, which is the base for the global application class, defines regular C# events that can be 
used instead of special methods, as shown in Listing 3-7. The choice between the standard C# events and the special 
methods is a personal one, and you can mix and match techniques if you want.

Listing 3-7.  Using C# Events in the Global.asax.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
 
namespace SimpleApp {
    public class MvcApplication : System.Web.HttpApplication {
 
        public MvcApplication() {
            BeginRequest += (src, args) => RecordEvent("BeginRequest");
            AuthenticateRequest += (src, args) => RecordEvent("AuthentucateRequest");
            PostAuthenticateRequest += (src, args) =>
                RecordEvent("PostAuthenticateRequest");
        }
 
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
        }
 
        private void RecordEvent(string name) {
            List<string> eventList = Application["events"] as List<string>;
            if (eventList == null) {
                Application["events"] = eventList = new List<string>();
            }
            eventList.Add(name);
        }
    }
}
 

I have added a constructor to the MvcApplication class and have used it to set up event handlers for three of 
the request life-cycle events. For all three events I have used lambda expressions that call the RecordEvent method, 
storing the name of the event so that it can be read back by the controller, just as in the previous example.

Tip■■  T here are no standard C# events to replace the Application_Start and Application_End methods. You can 
receive these notifications only via special methods.



Chapter 3 ■ The ASP.NET Life Cycles

40

Using a Single Method to Handle Multiple Events
You can use two properties defined by the SystemWeb.HttpContext class if you want to use a single method to handle 
multiple life-cycle events without relying on lambda expressions. The HttpContext class provides details of the 
current request and the state of the application, and I describe it later in this chapter. For the moment, however, the 
two properties that relate to processing life-cycle events are shown in Table 3-6.

Table 3-6.  The HttpContext Properties for Determining the Current Application Event

Name Description

CurrentNotification This property indicates the current application event using a value from the  
System.Web.RequestNotification enumeration.

IsPostNotification This property returns true if the current application event is the Post<Name> variant of the 
event returned by the CurrentNotification property.

These two properties are a little odd because both must be used to figure out which event is being handled. 
The CurrentNotification property returns a value from the RequestNotification enumeration, which defines a 
subset of the HttpApplication events. The value that this property returns is used with the IsPostNotification 
property to figure out whether the event that has been triggered is an event like AcquireRequestState or its paired 
event, PostAcquireRequestState. The HttpApplication class provides access to an HttpContext object through the 
Context property, and Listing 3-8 shows how to handle events in this way.

Listing 3-8.  Handling Life-Cycle Events in a Single Method in the Global.asax.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
 
namespace SimpleApp {
    public class MvcApplication : System.Web.HttpApplication {
 
        public MvcApplication() {
            BeginRequest += RecordEvent;
            AuthenticateRequest += RecordEvent;
            PostAuthenticateRequest += RecordEvent;
        }
 
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
        }
 



Chapter 3 ■ The ASP.NET Life Cycles

41

        private void RecordEvent(object src, EventArgs args) {
            List<string> eventList = Application["events"] as List<string>;
            if (eventList == null) {
                Application["events"] = eventList = new List<string>();
            }
            string name = Context.CurrentNotification.ToString();
            if (Context.IsPostNotification) {
                name = "Post" + name;
            }
            eventList.Add(name);
        }
    }
}
 

I changed the signature of the RecordEvent method so that it accepts the standard event handler arguments: 
an object that represents the source of the event and an EventArgs object that describes the event. I don’t use these, 
however, since the information about the event is exposed through the Context.CurrentNotification and  
Context.IsPostNotification properties.

I don’t know why Microsoft has implemented the events this way, but this is the approach you must use if you 
don’t like special methods or lambda expressions. Notice that in this listing I had to call the ToString method on the 
Context.CurrentNotification method; this is required because the CurrentNotification property returns a value 
from the System.Web.RequestNotification enumeration, which I have described in Table 3-7.

Table 3-7.  The Values of the RequestNotification Enumeration

Value Description

BeginRequest Corresponds to the BeginRequest event

AuthenticateRequest Corresponds to the AuthenticateRequest and PostAuthenticateRequest events

AuthorizeRequest Corresponds to the AuthorizeRequest event

ResolveRequestCache Corresponds to the ResolveRequestCache and PostResolveRequestCache events

MapRequestHandler Corresponds to the MapRequestHandler and PostMapRequestHandler events

AcquireRequestState Corresponds to the AcquireRequestState and PostAcquireRequestState event

PreExecuteRequestHandler Corresponds to the PreExecuteRequestHandler event

ExecuteRequestHandler Corresponds to the ExecuteRequestHandler event

ReleaseRequestState Corresponds to the ReleaseRequestState and PostReleaseRequestState event

UpdateRequestCache Corresponds to the UpdateRequestCache event

LogRequest Corresponds to the LogRequest event

EndRequest Corresponds to the EndRequest event

SendResponse Indicates that the response is being sent—corresponds loosely to the 
PreSendRequestHeaders and PreSendRequestContent events



Chapter 3 ■ The ASP.NET Life Cycles

42

The ASP.NET Context Objects
ASP.NET provides a set of objects that are used to provide context information about the current request, the response 
that will be returned to the client, and the web application itself; indirectly, these context objects can be used to access 
core ASP.NET framework features. Table 3-8 summarizes the context objects.

Table 3-8.  Putting the Request Life Cycle in Context

Question Answer

What are they? The context objects provide information about the application, the current request, and 
the response that is being prepared for it. They also provide access to the most important 
ASP.NET platform services such as security and state data.

Why should I care? You use the context objects within MVC framework controllers and views to vary your 
application responses based on the request or the state of the application. You also use 
these objects when creating modules and handlers, which I describe in Chapters 4 and 5.

How are they used by the 
MVC framework?

The MVC framework uses the context objects to process requests and build on ASP.NET 
services such as mobile device detection (which I describe in Chapter 7).

Understanding the ASP.NET Context Objects
The class at the heart of the context is System.Web.HttpContext. It is universally available throughout the  
ASP.NET framework and the MVC framework, and it acts as a gateway to other context objects and to ASP.NET 
platform features and services. In fact, the HttpContext class is so central to the ASP.NET framework that the most 
important properties are like a map to the rest of this book, as Table 3-9 illustrates.

Table 3-9.  The Most Commonly Used HttpContext Members

Name Description

Application Returns the HttpApplicationState object used to manage application state data (see 
Chapter 10).

ApplicationInstance Returns the HttpApplication object associated with the current request (described later 
in this chapter).

Cache Returns a Cache object used to cache data. See Chapter 11 for details.

Current (Static.) Returns the HttpContext object for the current request.

CurrentHandler Returns the IHttpHandler instance that will generate content for the request. See 
Chapter 5 for details of handlers and Chapter 6 for information about how to preempt 
the handler selection process used by the ASP.NET platform.

IsDebuggingEnabled Returns true if the debugger is attached to the ASP.NET application. You can use this to 
perform debug-specific activities, but if you do, take care to test thoroughly without the 
debugger before deployment.

Items Returns a collection that can be used to pass state data between ASP.NET framework 
components that participate in processing a request.

GetSection(name) Gets the specified configuration section from the Web.config file. I show you how to 
work with the Web.config files in Chapter 9.

(continued)



Chapter 3 ■ The ASP.NET Life Cycles

43

The HttpContext class also defines methods and properties that can be used to manage the request life  
cycle—like the CurrentNotification and IsPostNotification properties I used when handling life-cycle events 
with a single method in the previous section. I’ll show you the different context object features, including those 
defined by HttpContext, in the chapters that are related to their functionality.

As you saw in Listing 3-8, you can get an instance of the HttpContext class using the Context property from 
within the global application class. This property name is not universal; you will need to use the HttpContext 
property from within a controller class or a view, for example. If all else fails, you can get the HttpContext object 
associated with the current request by using the static HttpContext.Current property. For quick reference, Table 3-10 
summarizes the ways in which you can get an HttpContext object in the different parts of an application.

Name Description

Request Returns an HttpRequest object that provides details of the request being processed.  
I describe the HttpRequest class later in this chapter.

Response Returns an HttpResponse object that provides details of the response that is being 
constructed and that will be sent to the browser. I describe the HttpResponse object later 
in this chapter.

Session Returns an HttpSession state object that provides access to the session state. This 
property will return null until the PostAcquireRequestState application event has 
been triggered. See Chapter 10 for details.

Server Returns an HttpServerUtility object that can contain utility functions, the most useful 
being the ability to control request handler execution (see Chapter 6).

Timestamp Returns a DateTime object that contains the time at which the HttpContext object  
was created.

Trace Used to record diagnostic information. See Chapter 8.

Table 3-9.  (continued)

Table 3-10.  Obtaining an HttpContext in Different ASP.NET/MVC Components

Component Technique

Controller Use the HttpContext property defined by Controller, which is the base class for MVC 
framework controllers.

View Use the Context property defined by WebViewPage, which is the base class used to 
compile Razor views.

Global Application Class Use the Context convenience property defined by the HttpApplication class (which is 
the base for the global application class).

Module The Init method is passed an HttpContext object when it is invoked, and the  
life-cycle event handlers are passed an HttpApplication object, which defines a 
Context property. See Chapter 4 for details of modules.

Handler The ProcessRequest method is passed an HttpContext object when it is invoked. See 
Chapter 5 for details of handlers.

Universally You can always get the HttpContext object associated with the current request through 
the static HttpContext.Current property.



Chapter 3 ■ The ASP.NET Life Cycles

44

Tip■■  A  new set of context objects is created for every request, and when you obtain HttpRequest or HttpResponse 
objects, you will receive the instances that relate to the request being processed by the current instance of the  
global application class. Or, in other words, you don’t have to worry about locating the context objects that relate to a  
specific request.

Notice that I have not included the model in the list of application components in Table 3-10. You can obtain 
the HttpContext object for the current request in the model through the static HttpContext.Current property, but I 
suggest that you don’t because it blurs the separation of concerns between the model and the controller. If the model 
needs information about a request, then obtain this information from the context objects in the controller and pass it 
as method arguments to the model. This will ensure that the model doesn’t meddle in the business of controllers and 
will allow the model to be unit tested without any reference to ASP.NET or the MVC framework.

CONTEXT, BASE, AND WRAPPER CLASSES

The properties that I listed in Table 3-10 do not all return the same type. The properties used in the pre-MVC 
framework components (the global application class, handlers, and modules) return an HttpContext object, just 
as you would expect).

These context objects predate the MVC framework and make it hard to perform unit testing because they are 
tightly coupled, requiring you to create entire sets of context objects each time you want to perform a test.

The properties defined by the MVC framework components—the controller and the view—are used to get 
context objects and return instances of different classes that are derived from the context classes but provide 
support for easy unit testing. The HttpContext property in the Controller class returns an instance of the 
HttpContextBase class. All the context objects are represented by a class with Base appended to the name 
(HttpRequestBase, HttpResponseBase, and so on) and can more readily instantiated, configured, and mocked for 
testing purposes.

You will sometimes need to create a Base object from an ASP.NET object; for example, you might have an 
HttpRequest object but need to call a method that takes an HttpRequestBase object. The ASP.NET class library 
includes classes with Wrapper appended to the name: HttpContextWrapper, HttpRequestWrapper, and so  
on. These classes are derived from the Base classes and are used by the MVC framework to present the  
ASP.NET context classes in an MVC-friendly Base class (so HttpContextWrapper is derived from 
HttpContextBase, which accepts an instance of HttpContext as constructor arguments). The Wrapper class 
constructors take context objects as arguments and the properties, and methods of the HttpContextWrapper are 
passed to the HttpContext instance that it contains.

You can’t unwrap a Base object—converting from HttpRequestBase to HttpRequest, for example. But you 
can always get the context object you require through the static HttpContext.Current property, which returns 
an HttpContext object that presents the properties shown in Table 3-9. You will have to use the fully qualified 
name for this property (System.Web.HttpContext.Current) within controller classes because they define an 
HttpContext property that returns an HttpContextBase object. In this book, I treat the ASP.NET framework 
context classes and the MVC Base classes as being identical.



Chapter 3 ■ The ASP.NET Life Cycles

45

Working with HttpApplication Objects
Many of the classes that you will use in the ASP.NET framework provide convenience properties that are mapped 
to those defined by the HttpContext class. A good example of this overlap can be seen in HttpApplication, which 
is the base for the global application class. In Table 3-11, you can see the properties and methods defined by the 
HttpApplication class, many of which are similar to those defined by HttpContext.

Table 3-11.  The Members Defined by the HttpApplication Class

Name Description

Application Maps to the HttpContext.Application property, which provides access to  
application-wide state data, as described in Chapter 10.

CompleteRequest() Abandons the life cycle for the current request and moves directly to the LogRequest 
event. See Chapter 6 for details.

Context Returns the HttpContext object for the current request.

Init() Called when the Init method has been called on each of the registered modules; see 
Chapter 4 for details of modules.

Modules Returns an HttpModuleCollection object that details the modules in the application; see 
Chapter 4 for details of modules.

RegisterModule(type) Static method that registers a new module; see Chapter 4 for an example.

Request Returns the HttpContext.Request value, but throws an HttpException if the value is 
null.

Response Returns the HttpContext.Response value, but throws an HttpException if the value is 
null.

Server Maps to the HttpContext.Server property. See Chapter 6.

Session Returns the HttpContext.Session value, but throws an HttpException if the value is 
null. See Chapter 10.

Most of these members are convenience properties that map to the properties of the HttpContext class, but there 
are some points to note, as discussed in the following section.

Handling Property Exceptions
The Request, Response, Session, and User properties all return the value of the corresponding properties from the 
HttpContext class, but with a wrinkle—all of these properties will throw an HttpException if the value they get from 
HttpContext is null.

This happens because the HttpApplication class receives notifications for two different life cycles: the 
application life cycle and the request life cycle. Objects that describe a single request are not available when an 
instance of the global application class is being used to handle application-level events, so the HttpException is 
thrown if you try to access request-related properties when handling application-level notifications.

The policy of throwing an exception is harsh because it makes it hard to deal with HttpApplication objects 
of unknown provenance. You can see an example of this issue in Listing 3-9, which shows changes to the global 
application class.



Chapter 3 ■ The ASP.NET Life Cycles

46

Listing 3-9.  Writing Code That Deals with Both Kinds of HttpApplication Objects in the Global.asax.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
 
namespace SimpleApp {
    public class MvcApplication : System.Web.HttpApplication {
 
        public MvcApplication() {
            PostAcquireRequestState += (src, args) => CreateTimeStamp();
        }
 
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
            CreateTimeStamp();
        }
 
        private void CreateTimeStamp() {
            string stamp = Context.Timestamp.ToLongTimeString();
            if (Session != null) {
                Session["request_timestamp"] = stamp;
            } else {
                Application["app_timestamp"] = stamp;
            }
        }
    }
}
 

I have removed the code that registers and handles some of the request life-cycle events and have defined a new 
method that creates a timestamp and stores it as state data. I describe the ASP.NET framework support for state data 
(including the objects returned by Session and Application properties used here) in Chapter 10, but for now it is 
enough to know that the Session property will return an object for storing state for individual requests.

Tip■■   Notice that I create the request timestamp in response to the PostAcquireRequestState event. This is because 
the modules that provide state data services for requests are not asked to do so until the AcquireRequestState event; 
therefore, the Session property will return null, even if the global application class instance has been created to process 
events for a request. Don’t worry if this doesn’t make sense now; I explain how modules work in Chapter 4 and describe 
the different types of state data in Chapter 10.

The new method, called CreateTimeStamp, aims to reduce code duplication by dealing with application-level 
and request-level timestamps with the same set of statements. This code will throw an exception as soon as the 
application is started because it attempts to read the Session property for an instance of the global application class 
that has been created to deal with the Application_Start method being called.



Chapter 3 ■ The ASP.NET Life Cycles

47

I could address this by using try...catch blocks, but that would be bad practice because exception handling 
should not be used to manage the regular and expected flow of an application. Instead, I can use the equivalent 
properties directly on HttpContext, as shown in Listing 3-10. This allows me to use one method to create both kinds 
of timestamps in a single method without having to worry about exceptions.

Listing 3-10.  Using the Properties Defined by the HttpContext Class in the Global.asax.cs File

...
private void CreateTimeStamp() {
    string stamp = Context.Timestamp.ToLongTimeString();
    if (Context.Session != null) {
        Session["request_timestamp"] = stamp;
    } else {
        Application["app_timestamp"] = stamp;
    }
}
... 

Caution■■  T he change in Listing 3-10 won’t work until you have also applied the changes in Listing 3-11.

Notice that I only have to change the initial check for the Session property; if it isn’t null, I can use the 
Session property defined by the HttpApplication class. The Application property will always return an 
HttpApplicationState object because, as I explain in Chapter 10, the state management feature it provides is 
application-wide and is initialized when the application is started.

You need to pay attention to this issue only when working directly with the global application class where you 
can be working with objects that are not associated with an individual request. Elsewhere in ASP.NET, and especially 
within MVC framework controller classes, you will always be working with context objects that represent a request. As 
an example, Listing 3-11 shows the changes I made to the HomeController class to display the timestamps created in 
the previous listing.

Listing 3-11.  Displaying Timestamps in the HomeController.cs File

using System.Collections.Generic;
using System.Web.Mvc;
using SimpleApp.Models;
 
namespace SimpleApp.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            return View(GetTimeStamps());
        }
 
        [HttpPost]
        public ActionResult Index(Color color) {
            Color? oldColor = Session["color"] as Color?;
            if (oldColor != null) {
                Votes.ChangeVote(color, (Color)oldColor);
            } else {
                Votes.RecordVote(color);
            }



Chapter 3 ■ The ASP.NET Life Cycles

48

            ViewBag.SelectedColor = Session["color"] = color;
            return View(GetTimeStamps());
        }
 
        private List<string> GetTimeStamps() {
            return new List<string> {
                string.Format("App timestamp: {0}",
                    HttpContext.Application["app_timestamp"]),
                string.Format("Request timestamp: {0}", Session["request_timestamp"]),
            };
        }
    }
}
 

I have used the C# string composition feature, available through the static String.Format method, to create 
a list of messages that will be passed to the view. The Controller class that is the base for MVC framework 
controllers provides a Session convenience property that corresponds to HttpContext.Session (but I have to access 
HttpContext.Application directly since there is no corresponding convenience property).

You can see the timestamps by starting the application, as illustrated by Figure 3-7. Both values will be the same 
initially, but if you reload the browser window a few times, you will see that the application timestamp remains 
constant while the request timestamp is updated each time.

Figure 3-7.  Displaying application and request timestamps

Note■■  I f you find that both timestamps update for every request, then you may have forgotten to disable the Visual 
Studio Browser Link feature as described in Chapter 1. The Browser Link feature relies on injecting JavaScript code into 
the HTML sent to the browser that establishes a connection back to the server and waits for a change notification. The 
global application class handles all requests and not just those intended for the MVC framework, so the GetTimeStamps 
method is called twice for each request. Browser Link uses a feature called sessionless controllers that prevents the 
Context.Session property from ever being set, which has the effect of confusing the code in Listing 3-10 and updating 
the application-level timestamp. I describe sessionless controllers in Chapter 10.



Chapter 3 ■ The ASP.NET Life Cycles

49

Working with HttpRequest Objects
The HttpRequest object describes a single HTTP request as it is being processed. Table 3-12 describes the 
HttpRequest properties that provide information about the current request. (The HttpRequest class defines 
methods and some other properties, but I describe these in later chapters in the context of the platform features they 
correspond to.)

Table 3-12.  The Descriptive Properties Defined by the HttpRequest Class

Name Description

AcceptTypes Returns a string array containing the MIME types accepted by the 
browser.

Browser Returns an HttpBrowserCapabilities object that describes the 
capabilities of the browser; see Chapter 7 for more details.

ContentEncoding Returns a System.Text.Encoding object that represents the character set 
used to encode the request data.

ContentLength Returns the number of bytes of content in the request.

ContentType Returns the MIME type of the content included in the request.

CurrentExecutionFilePathExtension Returns the file extension component of the requested URL.

Headers Returns a collection containing the request headers.

HttpMethod Returns the HTTP method used to make the request (GET, POST, and so on).

InputStream Returns a stream that can be used to read the contents of the request.

IsLocal Returns true when the request has originated from the local machine.

MapPath(path) Translates a file name within the project to an absolute path. See Chapter 
11 for an example.

RawUrl Returns the part of the URL that follows the hostname. In other words, for 
http://apress.com:80/books/Default.aspx, this property would return 
/books/Default.aspx.

RequestContext Returns a RequestContext object that provides access to the routing 
information for a request. I demonstrate the use of the RequestContext 
object in Chapter 6.

Url Returns the request URL as a System.Uri object.

UrlReferrer Returns the referrer URL as a System.Uri object.

UserAgent Returns the user-agent string supplied by the browser.

UserHostAddress Returns the IP address of the remote client, expressed as a string.

UserHostName Returns the DNS name of the remote client.

UserLanguages Returns a string array of the languages preferred by the browser/user.

To demonstrate the use of the HttpRequest class, I have modified the Index.cshtml view so that it displays some 
of the request properties, as shown in Listing 3-12.

http://apress.com/books/Default.aspx


Chapter 3 ■ The ASP.NET Life Cycles

50

Listing 3-12  Displaying Request Details in the Index.cshtml File

@using SimpleApp.Models
@model List<string>
@{ Layout = null; }
 
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Vote</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
</head>
<body class="container">
    <div class="panel panel-primary">
        @if (ViewBag.SelectedColor == null) {
            <h4 class="panel-heading">Vote for your favorite color</h4>
        } else {
            <h4 class="panel-heading">Change your vote from @ViewBag.SelectedColor</h4>
        }
 
        <div class="panel-body">
 
            @using (Html.BeginForm()) {
                @Html.DropDownList("color",
                        new SelectList(Enum.GetValues(typeof(Color))), "Choose a Color",
                            new { @class = "form-control" })
                <div>
                    <button class="btn btn-primary center-block"
                            type="submit">
                        Vote
                    </button>
                </div>
            }
 
        </div>
    </div>
 
    <div class="panel panel-primary">
        <h5 class="panel-heading">Results</h5>
        <table class="table table-condensed table-striped">
            @foreach (Color c in Enum.GetValues(typeof(Color))) {
                <tr><td>@c</td><td>@Votes.GetVotes(c)</td></tr>
            }
        </table>
    </div>
 



Chapter 3 ■ The ASP.NET Life Cycles

51

    <div class="panel panel-primary">
        <h5 class="panel-heading">Request Properties</h5>
        <table class="table table-condensed table-striped">
            <tr><th>Property</th><th>Value</th></tr>
            <tr><td>HttpMethod</td><td>@Request.HttpMethod</td></tr>
            <tr><td>IsLocal</td><td>@Request.IsLocal</td></tr>
            <tr><td>RawURL</td><td>@Request.RawUrl</td></tr>
        </table>
    </div>
</body>
</html>
 

Notice that I am able to access the HttpRequest object using a property called Request, like this:
 
...
<tr><td>HttpMethod</td><td>@Request.HttpMethod</td></tr>
...
 

The HttpRequest object is so frequently used that some application components, including Razor views, provide 
convenience properties so that you don’t have to obtain an HttpContext object just to get an instance of HttpRequest. 
Table 3-13 summarizes the convenience properties that are available for HttpRequest objects.

Table 3-13.  Obtaining an HttpRequest Object in Different ASP.NET/MVC Components

Component Technique

Controller Use the Request convenience property.

View Use the Request convenience property.

Global Application Class Use the Request convenience property.

Module No convenience property is available. Use the HttpContext.Request property.  
(Modules are described in Chapter 4.)

Handler No convenience property is available. Use the HttpContext.Request property. 
(Handlers are described in Chapter 5.)

Universally You can always get the HttpRequest object for the current request through the static 
HttpContext.Current.Request property.

Figure 3-8 shows the request property values displayed by the view, for both an initial GET request and the POST 
request that results when the user selects a color and clicks the Vote button.



Chapter 3 ■ The ASP.NET Life Cycles

52

In addition to the properties shown in Table 3-12, there are some properties that provide access to the data 
included in a request. I have shown these in Table 3-14, but they are not usually used directly in MVC controllers 
because model binding, which I describe in Pro ASP.NET MVC 5, is easier to work with. These properties are 
sometimes used in modules, however.

Figure 3-8.  Displaying details of the request

Table 3-14.  Additional Properties Defined by the HttpRequest Class

Name Description

Files Returns a collection of files sent by the browser in a form.

Form Provides access to the raw form data.

Params A collection of the combined data items from the query string, form fields, and cookies. You can 
also use an array-style indexer directly on the HttpRequest object, such that Request["myname"] is 
the same as Request.Params["myname"].

QueryString Returns a collection of the query string parameters; this property isn’t usually used directly in MVC 
applications.

Working with HttpResponse Objects
The HttpResponse object is the counterpart to HttpRequest and represents the response as it is being constructed. 
It also provides methods and properties that let you customize the response, something that is rarely required when 
using MVC views but that can be useful when working with other components, such as modules and handlers 
(described in Chapters 4 and 5).

Like HttpRequest, this class is essential to the way that ASP.NET processes requests and is used extensively 
within the MVC framework to generate the HTML (or other data) that is returned to clients. I have described the most 
important methods and properties in Table 3-15.



Chapter 3 ■ The ASP.NET Life Cycles

53

Table 3-15.  The Most Useful Members of the HttpResponse Class

Name Description

AppendHeader(name, val) Convenience method to add a new header to the response.

BufferOutput Gets or sets a value indicating whether the request should be buffered completely 
before it is sent to the browser. The default value is true. Changing this to false will 
prevent subsequent modules and handlers from being able to alter the response.

Cache Returns an HttpCachePolicy object that specifies the caching policy for the response. 
I describe the ASP.NET caching services in Chapters 11 and 12.

CacheControl Gets or set the cache-control HTTP header for the response.

Charset Gets or sets the character set specified for the response.

Clear() The Clear and ClearContent methods are equivalent, and they remove any content 
from the response.

ClearContent()

ClearHeaders() Removes all of the headers from the response.

ContentEncoding Gets or sets the encoding used for content in the response.

Headers Returns the collection of headers for the response.

IsClientConnected Returns true if the client is still connected to the server.

IsRequestBeingDirected Returns true if the browser will be sent a redirection.

Output Returns a TextWriter that can be used to write text to the response.

OutputStream Returns a Stream that can be used to write binary data to the response.

RedirectLocation Gets or sets the value of the HTTP Location header.

Status Gets or sets the status for the response; the default is 200 (OK).

StatusCode Gets or sets the numeric part of the status; the default is 200.

StatusDescription Gets or sets the text part of the status; the default is (OK).

SuppressContent When set to true, this property prevents the response content from being sent to the 
client.

Write(data) Writes data to the response output stream.

WriteFile(path) Writes the contents of the specified file to the output stream.

In Table 3-16, I have summarized the convenience properties for a range of ASP.NET and MVC framework 
components.



Chapter 3 ■ The ASP.NET Life Cycles

54

Summary
In this chapter, I described the application and request life cycles, which provide the foundation for much of the 
functionality provided by the ASP.NET platform—and, by implication, the MVC framework. I introduced the global 
application class and explained the role of the special Application_Start and Application_End methods and their 
relationship to the application life cycle. I also described the request life-cycle events and explained how they are used 
to move a request through ASP.NET, something that will become clearer once I have described modules and handlers 
in later chapters. I finished the chapter by providing an overview of the context objects that ASP.NET provides for 
describing the state of the application, the current request being processed, and the response that is being prepared for 
it. You’ll see these context objects throughout the book because they underpin so much of what ASP.NET can do. In the 
next chapter, I describe modules, which are self-contained components that handle the request life-cycle events.

Table 3-16.  Obtaining an HttpResponse Object in Different ASP.NET/MVC Components

Component Technique

Controller Use the Response convenience property.

View Use the Response convenience property.

Global Application Class Use the Response convenience property.

Module No convenience property is available. Use the HttpContext.Response property. 
(Modules are described in Chapter 4.)

Handler No convenience property is available. Use the HttpContext.Response property. 
(Handlers are described in Chapter 5.)

Universally You can always get the current HttpResponse object through the static  
HttpContext.Current.Response property.



55

Chapter 4

Modules

In the previous chapter, I showed you how to handle life-cycle requests in the global application class. The problem 
with this approach is that the code quickly becomes a mess, especially when you are trying to perform different kinds 
of work driven by the same set of events. In this chapter, I describe modules, which are self-contained components 
that receive and handle life-cycle requests and which can monitor or modify a request and its response. Not only do 
modules avoid a morass of code in the global application class, but they can be packaged up and used in multiple 
applications, providing a useful mechanism for creating reusable features for customizing or debugging the ASP.NET 
request handling process.

In this chapter, I explain how modules work, how you can create them, and how they fit into the request life 
cycle. In Chapter 5, I explain how modules can be used to provide services to handlers, which are the component 
responsible for generating content for a request. Table 4-1 summarizes this chapter.

Table 4-1.  Chapter Summary

Problem Solution Listing

Create a module. Implement the IHttpModule interface. 1–2

Register a module. Create an add element in the system.webServer/modules  
section of the Web.config file or apply the 
PreApplicationStartMethod attribute.

3–5

Provide functionality to other modules. Define a module event. 6

Consume functionality from other modules. Locate the module via the HttpApplication instance and 
register a handler for the events it defines.

7–10

Preparing the Example Project
I am going to continue using the SimpleApp project I created in Chapter 2 and modified in Chapter 3. At the end of 
the previous chapter, I demonstrated how to display details about the current HTTP request using the HttpRequest 
object. To prepare for this chapter, I have removed the table element that displays information from the Views/Home/
Index.cshtml file, as shown in Listing 4-1.



Chapter 4 ■ Modules

56

Listing 4-1.  The Contents of the Index.cshtml File

@using SimpleApp.Models
@{ Layout = null; }
 
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Vote</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
</head>
<body class="container">
    <div class="panel panel-primary">
        @if (ViewBag.SelectedColor == null) {
            <h4 class="panel-heading">Vote for your favorite color</h4>
        } else {
            <h4 class="panel-heading">Change your vote from @ViewBag.SelectedColor</h4>
        }
 
        <div class="panel-body">
 
            @using (Html.BeginForm()) {
                @Html.DropDownList("color",
                        new SelectList(Enum.GetValues(typeof(Color))), "Choose a Color",
                            new { @class = "form-control" })
                <div>
                    <button class="btn btn-primary center-block"
                            type="submit">
                        Vote
                    </button>
                </div>
            }
 
        </div>
    </div>
 
    <div class="panel panel-primary">
        <h5 class="panel-heading">Results</h5>
        <table class="table table-condensed table-striped">
            @foreach (Color c in Enum.GetValues(typeof(Color))) {
                <tr><td>@c</td><td>@Votes.GetVotes(c)</td></tr>
            }
        </table>
    </div>
 
</body>
</html>
 

The example application contains some other remnants from the previous chapter, such as the global application 
class generating timestamps in response to application life-cycle notifications and request life-cycle events, but I am going 
to ignore those for the moment. Figure 4-1 shows how the browser displays the view rendered by the example application.



Chapter 4 ■ Modules

57

ASP.NET Modules
In this section, I introduce you to the interface that defines modules, show you how to create your own module, and 
explain the process for registering modules with the ASP.NET platform. Table 4-2 puts modules in context.

Figure 4-1.  The example application

Table 4-2.  Putting Modules in Context

Question Answer

What is it? Modules are classes that handle life-cycle events to monitor or 
manipulate requests or responses. Modules can also provide services to 
handlers, which I describe in Chapter 5.

Why should I care? Modules are one of the easiest ways to take control of the ASP.NET 
request handling process, which allows you to customize the way that 
ASP.NET works or provide custom services to your MVC framework 
applications.

How is it used by the MVC framework? The MVC framework includes a module that prevents requests for view 
files. In addition, MVC relies on several ASP.NET platform services, which 
are delivered using modules and which are described in Part 3.



Chapter 4 ■ Modules

58

Creating a Module
Modules are classes that implement the System.Web.IHttpModule interface. The interface defines the two methods 
described in Table 4-3. I am going to begin by creating a simple module and showing you how to use it in an MVC 
framework application.

Table 4-3.  The Methods Defined by the IHttpModule Interface

Name Description

Init(app) This method is called when the module class is instantiated and is passed an HttpApplication 
object, which is used to register handler methods for the request life-cycle events and to initialize 
any resources that are required.

Dispose() This method is called when the request processing has finished. Use this method to release any 
resources that require explicit management.

I started by creating a folder called Infrastructure, which is where I like to put supporting classes in an MVC 
framework project. I added a class file called TimerModule.cs to the new folder and used it to define the module 
shown in Listing 4-2.

Listing 4-2.  The Contents of the TimerModule.cs File

using System;
using System.Diagnostics;
using System.Web;
 
namespace SimpleApp.Infrastructure {
 
    public class TimerModule : IHttpModule {
        private Stopwatch timer;
 
        public void Init(HttpApplication app) {
            app.BeginRequest += HandleEvent;
            app.EndRequest += HandleEvent;
        }
 
        private void HandleEvent(object src, EventArgs args) {
            HttpContext ctx = HttpContext.Current;
            if (ctx.CurrentNotification == RequestNotification.BeginRequest) {
                timer = Stopwatch.StartNew();
            } else {
                ctx.Response.Write(string.Format(
                    "<div class='alert alert-success'>Elapsed: {0:F5} seconds</div>",
                     ((float) timer.ElapsedTicks) / Stopwatch.Frequency));
            }
        }
 
        public void Dispose() {
            // do nothing - no resources to release
        }
    }
}



Chapter 4 ■ Modules

59

Tip■■   Be careful if you use Visual Studio to implement the interface in a module class (by right-clicking the interface 
name on the class definition and selecting Implement Interface from the pop-up menu). Visual Studio will add method 
implementations that throw a NotImplementedException, and a common mistake is to forget to remove the exception 
from the Dispose method. The ASP.NET platform will invoke the Dispose method even if you don’t have any resource to 
release. Remove the throw statement from the method body and replace it with a comment, as shown in Listing 4-2.

This module uses the high-resolution Stopwatch timer class in the System.Diagnostics namespace to measure 
the elapsed time between the BeginRequest and EndRequest life-cycle events. Since this is the first module I have 
demonstrated, I will walk through the way it works in detail.

Tip■■  T he Stopwatch class expresses elapsed time in ticks, which are based on the underlying timing mechanism 
available to the .NET Framework on the machine on which the code is executing. I have to use the static Frequency 
property when I display the result, which tells me how many ticks the timer makes per second.

Setting Up the Event Handlers
Modules are instantiated when the ASP.NET framework creates an instance of the global application class. The 
module Init method is invoked so that the module can prepare itself to handle requests, which usually means 
registering event handlers with the HttpApplication object that is passed as the method’s argument. In the 
TimerModule, I use the Init method to register the HandleEvent method as a handler for the BeginRequest and 
EndRequest events, like this:
 
...
public void Init(HttpApplication app) {
    app.BeginRequest += HandleEvent;
    app.EndRequest += HandleEvent;
}
...

Caution■■  A s I explained in Chapter 3, the ASP.NET framework creates multiple instances of the global application 
class, some of which will exist at the same time so that HTTP requests can be processed concurrently. Each global  
application class instance is given its own set of module objects, which means you must write your module code such that 
multiple instances can exist simultaneously in harmony and that each module can handle multiple requests sequentially.

The Init method is called only when a module object is instantiated, which means you must use the Init 
method only to perform one-off configuration tasks such as setting up event handlers. You must not perform 
configuration tasks that are required to process individual requests, which is why I don’t instantiate the timer object in 
the Init method of this module.



Chapter 4 ■ Modules

60

Handling the BeginRequest Event
The BeginEvent life-cycle event is my cue to start the timer. I use the same method to handle both of the events I 
am interested in, which means I have to use the HttpContext.CurrentNotification property, which I described in 
Chapter 3, to work out which event I have received, as follows:
 
...
private void HandleEvent(object src, EventArgs args) {
    HttpContext ctx = HttpContext.Current;
    if (ctx.CurrentNotification == RequestNotification.BeginRequest) {
        timer = Stopwatch.StartNew();
    } else {
        ctx.Response.Write(string.Format(
            "<div class='alert alert-success'>Elapsed: {0:F5} seconds</div>",
            ((float) timer.ElapsedTicks) / Stopwatch.Frequency));
    }
}
...
 

The src object passed to event handlers for life-cycle events is an instance of the HttpApplication class, which you 
can use to get an HttpContext object, but I find it easier to use the static HttpContext.Current property. I instantiate 
and start a new timer if the CurrentNotification property indicates that I have received the BeginRequest event.

Tip■■  T his is a per-request configuration task, which means it should not be performed in the Init method, as  
described in the previous section. The ASP.NET framework is free to create and destroy instances of modules as it sees 
fit, and there is no way of telling how many requests an instance of a module class will be used to service (although you 
can be sure that each instance will be used to service only one request at a time).

Handling the EndRequest Event
Receiving the EndRequest event tells me that the request has been marshaled through the request life cycle and the 
MVC framework has generated a response that will be sent to the browser. The response has not been sent when the 
EndRequest event is triggered, which allows me to manipulate it through the HttpResponse context object. In this 
example, I append a message to the end of the response that reports the elapsed time between the BeginRequest and 
EndRequest, as follows:
 
...
private void HandleEvent(object src, EventArgs args) {
    HttpContext ctx = HttpContext.Current;
    if (ctx.CurrentNotification == RequestNotification.BeginRequest) {
        timer = Stopwatch.StartNew();
    } else {
        ctx.Response.Write(string.Format(
            "<div class='alert alert-success'>Elapsed: {0:F5} seconds</div>",
            ((float) timer.ElapsedTicks) / Stopwatch.Frequency));
    }
}
...
 



Chapter 4 ■ Modules

61

I use the HttpResponse.Write method to add a string to the response. I format the string as HTML and use the 
Bootstrap alert and alert-success CSS classes to style the content as an inline alert box.

Registering a Module
Unlike the MVC framework, the ASP.NET platform doesn’t discover classes dynamically, which means you have to 
explicitly register a module with the ASP.NET framework before it takes effect. Modules are registered in the Web.
config file, as shown in Listing 4-3.

Listing 4-3.  Registering a Module in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <add name="Timer" type="SimpleApp.Infrastructure.TimerModule"/>
    </modules>
  </system.webServer>
</configuration>
 

I describe the Web.config file in detail in Chapter 9, but for the moment it is enough to know that modules are 
registered in the system.webServer/modules section and that each module is defined using the add element. The 
attributes for the add element are name, which is a unique name that describes the module, and type, which is the fully 
qualified name of the module class.

Testing the Module
All that remains is to start the application and see the effect the module has. Each time the ASP.NET framework 
receives an HTTP request, the TimerModule class will be sent the BeginRequest event, which starts the clock. After the 
request has proceeded through its life cycle, the module is sent the EndRequest event, which stops the clock and adds 
the time summary to the response, as illustrated by Figure 4-2.



Chapter 4 ■ Modules

62

If you look at the HTML that has been sent to the browser (by right-clicking in the browser window and selecting 
View Source from the pop-up menu), you will see how the message from the module has been added to the response:
 
...
    <div class="panel panel-primary">
        <h5 class="panel-heading">Results</h5>
        <table class="table table-condensed table-striped">
                <tr><td>Red</td><td>0</td></tr>
                <tr><td>Green</td><td>0</td></tr>
                <tr><td>Yellow</td><td>0</td></tr>
                <tr><td>Purple</td><td>0</td></tr>
        </table>
    </div>
</body>
</html>
<div class='alert alert-success'>Elapsed: 0.00133 seconds</div>
 

Notice that the div element that the module adds to the response appears after the closing html tag. This 
happens because the ASP.NET framework doesn’t care about the kind of data that an HTTP response contains and so 
there is no special support for ensuring that HTML is properly formatted. The main part of the response is generated 
by the handler, which I describe in Chapter 5, and additions to the response by modules either precede or follow the 
content that the handler generates.

Figure 4-2.  The effect of the module



Chapter 4 ■ Modules

63

Tip■■   Browsers are incredibly tolerant to badly formatted HTML because there is so much of it on the Internet. It is bad 
practice to rely on a browser being able to figure out how to handle bad data, but I admit that I often do just that when I 
am using modules to debug request processing or performance problems.

Creating Self-registering Modules
One of the benefits modules confer is that they can be reused across multiple projects. A common approach to 
module development is to define them in a separate project from the rest of the web application so that the output 
from the project can be used multiple times.

Creating a module project is a simple task, except for the process of registering the modules. You can define 
a fragment of XML that has to be inserted into the Web.config file, but this puts you at the mercy of the developer 
or administrator who sets up the web application—something that I generally like to avoid, especially when I have 
several modules that work together to deliver functionality. A better approach is to create modules that register 
themselves automatically using an assembly attribute called PreApplicationStartMethod. This attribute allows an 
assembly to define a method that is executed before the Application_Start method in the global application class is 
invoked, which is exactly when modules need to be registered. In the sections that follow, I’ll walk through the process 
of using the PreApplicationStartMethod, which is summarized by Table 4-4.

Table 4-4.  Putting the PreApplicationStartMethod Attribute in Context

Question Answer

What is it? The PreApplicationStartMethod attribute allows assemblies to specify a method that 
will be executed when the web application is started, prior to the global application 
class Application_Start method being invoked.

Why should I care? This attribute makes it easy to perform one-off configuration tasks in class library 
projects so that additions to the Web.config file are not required.

How is it used by the MVC 
framework?

The MVC framework uses the attribute to configure a range of features, including 
registering HTML helper methods and setting up authentication providers for 
Facebook and other services. (See Part 3 for details of ASP.NET authentication.)

Creating the Project
I am going to create a second project called CommonModules within the Visual Studio solution that contains the 
SimpleApp project. This is not a requirement of using the PreApplicationStartMethod attribute, but it makes it easier 
for me to demonstrate the technique and use the output from the CommonModules project as a dependency of the 
SimpleApp project.

Right-click the Solution item in the Visual Studio Solution Explorer and select Add ➤ New Project from the 
pop-up menu. Visual Studio will display the Add New Project dialog window; select the Installed ➤ Visual C# ➤ Class 
Library project type, set the name to CommonModules, and click the OK button to create the project.

I need to add the System.Web assembly to the CommonModules project so that I have access to the IHttpModule 
interface and the context objects. Click the CommonModules project in the Solution Explorer and select Add 
Reference from the Visual Studio Project menu. Locate the System.Web assembly (you’ll find it in the Assemblies ➤ 
Framework section) and check the box next it, as shown in Figure 4-3. Click the OK button to dismiss the dialog box 
and add the assembly reference to the project.



Chapter 4 ■ Modules

64

I need to add a reference from the SimpleApp project to the CommonModules project so that the module I 
create will be available in the web application. Select the SimpleApp project in the Solution Explorer and select Add 
Reference from the Project menu. Click the Solution section and check the box next to the CommonModules entry,  
as shown in Figure 4-4. Click the OK button to dismiss the dialog box and add the assembly reference to the project.

Figure 4-3.  Adding the System.Web assembly to the CommonModules project

Figure 4-4.  Adding a reference to the CommonModules project

Now that there are two projects in the solution, I need to tell Visual Studio which one I want to start when I run 
the debugger. Right-click the SimpleApp project in the Solution Explorer and select Set As StartUp Project from the 
pop-up menu.

Creating the Module
Visual Studio adds a class file called Class1.cs to the new project. Rename this file to InfoModule.cs and edit the 
contents to match Listing 4-4.



Chapter 4 ■ Modules

65

Listing 4-4.  The Contents of the InfoModule.cs File 

using System.Web;
 
namespace CommonModules {
 
    public class InfoModule : IHttpModule {
         
        public void Init(HttpApplication app) {
            app.EndRequest += (src, args) => {
                HttpContext ctx = HttpContext.Current;
                ctx.Response.Write(string.Format(
                    "<div class='alert alert-success'>URL: {0} Status: {1}</div>",
                    ctx.Request.RawUrl, ctx.Response.StatusCode));
            };
        }
 
        public void Dispose() {
            // do nothing - no resources to release
        }
    }
}
 

This module handles the EndRequest event and appends a fragment of HTML to the response, which details the 
URL that was requested and the status code sent to the browser. I have handled the event using a lambda expression 
(just for variety), but the overall structure/nature of the module is similar to the TimerModule module I created in the 
previous section.

Creating the Registration Class
To automatically register a module, I need to create a method that calls the static HttpApplication.RegisterModule 
method and then apply the PreApplicationStartMethod attribute to call this method when the application starts.  
I like to define a separate class to register the module because it means I can register all of the modules in the project 
in a single place. I added a class file called ModuleRegistration.cs to the CommonModules project. Listing 4-5 shows 
the contents of the new file.

Listing 4-5.  The Contents of the ModuleRegistration.cs File

using System.Web;
 
[assembly: PreApplicationStartMethod(typeof(CommonModules.ModuleRegistration),
    "RegisterModule")]
 
namespace CommonModules {
    public class ModuleRegistration {
 
        public static void RegisterModule() {
            HttpApplication.RegisterModule(typeof(CommonModules.InfoModule));
        }
    }
}
 



Chapter 4 ■ Modules

66

The arguments for the PreApplicationStartMethod are the type of the class that contains the method that will be 
executed when the application starts and the name of that method, expressed as a string. I have applied the attribute 
in the file that contains the class and the method, as follows:
 
...
[assembly: PreApplicationStartMethod(typeof(CommonModules.ModuleRegistration),
    "RegisterModule")]
...
 

The method must be public and static and cannot take any arguments. You are free to put any statements in 
the method, but it is good practice to only perform tasks that configure the code in the project to work with the web 
application, such as registering modules.

Testing the Module 
You can test the effect of the PreApplicationStartMethod attribute by selecting Start Debugging from the Visual 
Studio Debug menu. Visual Studio will build both projects, start the application, and load the module from the 
CommonModules project. You can see the message that the module adds to the response in Figure 4-5.

Figure 4-5.  The output from the InfoModule

Using Module Events
My timer module is a nice demonstration of the way that modules can participate in the request processing life cycle 
and—optionally—manipulate the response sent to the client, but it has one problem: The timing information that it 
generates is locked away, which will force me to duplicate functionality if I need to do something similar in another 
module. Not only does this create a code maintenance concern—an anathema in MVC applications—but it also adds 
to the amount of time taken to process each request, leading to inconsistencies in the timing information within 
different modules.

What I need is the ability to share the timing information with other modules so that I can build on my core 
functionality, which I can do by creating a module event. Module events allow modules to coordinate their activities 
and share data. Table 4-5 puts module events in context.



Chapter 4 ■ Modules

67

Defining the Module Event
I am going to create a new module that keeps track of the total amount of time taken to process requests. Obviously, 
this requires me to measure the time taken for individual requests, which would duplicate the functionality of the 
TimerModule that I created at the start of the chapter.

Rather than duplicate the TimerModule functionality, I am going to extend it by adding an event that is triggered 
when timing information is available. To this end, you can see the changes I have made to the TimerModule.cs file in 
Listing 4-6.

Listing 4-6.  Adding an Event to the TimerModule.cs File

using System;
using System.Diagnostics;
using System.Web;
 
namespace SimpleApp.Infrastructure {
 
    public class RequestTimerEventArgs : EventArgs {
        public float Duration { get; set; }
    }
 
    public class TimerModule : IHttpModule {
        public event EventHandler<RequestTimerEventArgs> RequestTimed;
        private Stopwatch timer;
 
        public void Init(HttpApplication app) {
            app.BeginRequest += HandleEvent;
            app.EndRequest += HandleEvent;
        }
 
        private void HandleEvent(object src, EventArgs args) {
            HttpContext ctx = HttpContext.Current;
            if (ctx.CurrentNotification == RequestNotification.BeginRequest) {
                timer = Stopwatch.StartNew();
            } else {
                float duration = ((float) timer.ElapsedTicks) / Stopwatch.Frequency;
                ctx.Response.Write(string.Format(
                    "<div class='alert alert-success'>Elapsed: {0:F5} seconds</div>",
                    duration));

Table 4-5.  Putting Module Events in Context

Question Answer

What are they? Module events are standard C# events that are triggered to share data 
or coordinate activities between modules.

Why should I care? Using module events allows you to create more complex functionality 
without needing to duplicate functionality in multiple modules.

How are they used by the MVC framework? The MVC framework doesn’t use module events directly.



Chapter 4 ■ Modules

68

                if (RequestTimed != null) {
                    RequestTimed(this,
                        new RequestTimerEventArgs { Duration = duration });
                }
            }
        }
 
        public void Dispose() {
            // do nothing - no resources to release
        }
    }
}
 

I have defined an event called RequestTimed that sends a RequestTimerEventArgs object to its handlers.  
This object defines a float value that provides access to the time taken for the request to be processed.

Creating the Consuming Module
My next step is to create a module that will handle the event from TimerModule and gather details of the overall 
amount of time spent handling requests. I could create this module in either of the projects in the solution, but it 
makes sense to keep modules that depend on one another together, so I added a class file called TotalTimeModule.cs 
to the Infrastructure folder of the SimpleApp project. Listing 4-7 shows the module I defined in the new file.

Listing 4-7.  The Contents of the TotalTimeModule.cs File

using System.IO;
using System.Web;
using System.Web.UI;
 
namespace SimpleApp.Infrastructure {
    public class TotalTimeModule : IHttpModule {
        private static float totalTime = 0;
        private static int requestCount = 0;
 
        public void Init(HttpApplication app) {
            IHttpModule module = app.Modules["Timer"];
            if (module != null && module is TimerModule) {
                TimerModule timerModule = (TimerModule)module;
                timerModule.RequestTimed += (src, args) => {
                    totalTime += args.Duration;
                    requestCount++;
                };
            }
 
            app.EndRequest += (src, args) => {
                app.Context.Response.Write(CreateSummary());
            };
        }
 



Chapter 4 ■ Modules

69

        private string CreateSummary() {
            StringWriter stringWriter = new StringWriter();
            HtmlTextWriter htmlWriter = new HtmlTextWriter(stringWriter);
            htmlWriter.AddAttribute(HtmlTextWriterAttribute.Class,
                "table table-bordered");
            htmlWriter.RenderBeginTag(HtmlTextWriterTag.Table);
                htmlWriter.AddAttribute(HtmlTextWriterAttribute.Class, "success");
                htmlWriter.RenderBeginTag(HtmlTextWriterTag.Tr);
                    htmlWriter.RenderBeginTag(HtmlTextWriterTag.Td);
                        htmlWriter.Write("Requests");
                        htmlWriter.RenderEndTag();
                        htmlWriter.RenderBeginTag(HtmlTextWriterTag.Td);
                        htmlWriter.Write(requestCount);
                    htmlWriter.RenderEndTag();
                htmlWriter.RenderEndTag();
                    htmlWriter.AddAttribute(HtmlTextWriterAttribute.Class, "success");
                    htmlWriter.RenderBeginTag(HtmlTextWriterTag.Tr);
                        htmlWriter.RenderBeginTag(HtmlTextWriterTag.Td);
                        htmlWriter.Write("Total Time");
                        htmlWriter.RenderEndTag();
                        htmlWriter.RenderBeginTag(HtmlTextWriterTag.Td);
                        htmlWriter.Write("{0:F5} seconds", totalTime);
                    htmlWriter.RenderEndTag();
                htmlWriter.RenderEndTag();
            htmlWriter.RenderEndTag();
            return stringWriter.ToString();
        }
 
        public void Dispose() {
            // do nothing
        }
    }
}
 

The module looks more complicated than it really is because of the way I have chosen to create the HTML 
fragment that is inserted into the response to the browser. I’ll explain how this works in the “Generating HTML” 
section later in the chapter. The most important part of this example is the technique for setting up the handler  
for the event defined by the TimerModule class.

The HttpApplication class defines a property called Modules that returns a collection of modules 
objects, indexed by the name with which they were registered, either in the Web.config file or using the 
PreApplicationStartMethod attribute. This allows me to locate the TimerModule, which was registered using the 
name Timer in Listing 4-3, like this:
...
IHttpModule module = app.Modules["Timer"];
if (module != null && module is TimerModule) {
    TimerModule timerModule = (TimerModule)module;
    timerModule.RequestTimed += (src, args) => {
        totalTime += args.Duration;
        requestCount++;
    };
}
...
 



Chapter 4 ■ Modules

70

Tip■■  T he collection returned by the Modules property is also indexed by position so that, for example, Modules[0]  
and Modules[1] return the first two modules that were registered. 

Once I have located the module I want, I cast the object and add a handler to the event that I defined in the 
previous section. All modules require registration, and in Listing 4-8 you can see the addition I made to the Web.config 
file to register the TotalTimeModule class.

Listing 4-8.  Registering the Module in the Web.config File 

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <add name="Timer" type="SimpleApp.Infrastructure.TimerModule"/>
      <add name="Total" type="SimpleApp.Infrastructure.TotalTimeModule"/>
    </modules>
  </system.webServer>
</configuration>

Tip■■  A ll of the registered module classes are instantiated before their Init methods are invoked. The order in which 
modules are registered determines the order in which life-cycle requests are sent to modules but doesn’t have an impact 
on locating other modules through the HttpApplication.Modules property.

You can see the new module consuming the event from the Timer module by starting the application,  
as illustrated by Figure 4-6.



Chapter 4 ■ Modules

71

Generating HTML
The modules I created in this chapter add some HTML content to the response sent to the browser. This isn’t the 
only thing you can do with modules, of course, and you’ll get a sense of what’s possible when I describe the built-in 
modules later in this chapter and show you how modules can provide custom services to handlers in Chapter 5—but  
I find adding diagnostic fragments to be helpful in solving complex problems.

I used two different techniques for generating the HTML fragments. The first, which I used in the TimerModule 
class, is to use the standard C# string composition feature, like this:
 
...
string.Format("<div class='alert alert-success'>Elapsed: {0:F5} seconds</div>",
    duration));
...
 

This approach is fine for tiny pieces of HTML, but it becomes difficult to manage for anything other than single 
elements. The problem is that you need to create strings that can be safely processed twice: once by the .NET runtime 
and once by the browser. Careful attention must be paid to getting the single and double quotes right, escaping 
dangerous characters, and making sure that the data values with which the HTML string is composed are safe to display.

The other technique I used was to apply the HtmlTextWriter class, which is defined in the System.Web.UI 
namespace. The namespace contains a lot of Web Forms classes, but the HtmlTextWriter can be used in any ASP.NET 
application, and it takes a much more structured approach to creating HTML. The result is correctly structured 
HTML, but the code is more verbose and takes a little time to get used to. Table 4-6 shows the HtmlTextWriter 
methods that I used in Listing 4-7.

Figure 4-6.  Generating diagnostic data based on an event in another module

Table 4-6.  The HtmlTextWriter Methods Used in the TotalTimeModule

Name Description

AddAttribute(attr, value) Sets an attribute that will be applied to the next element that is rendered. The 
attribute is specified as a value from the HtmlTextWriterAttribute enumeration.

RenderBeginTag(tag) Writes the opening tag of an HTML element specified as a value from the 
HtmlTextWriterTag enumeration.

RenderEndTag() Writes the ending tag to match the most recently written opening tag.

Write(content) Writes content to the response. There are overloaded versions of this method for 
strings and the C# primitive types (int, bool, long, and so on).



Chapter 4 ■ Modules

72

Notice that I had to call the AddAttribute method before I called the RenderBeginTag method. The RenderBeginTag 
method will write out all of the attributes I defined since the last opening tag was written. It is a little odd to define the 
attributes before specifying the element that they apply to, but it quickly becomes second nature.

The main problem with the HtmlTextWriter class is that you often end up with a mass of method calls that are 
hard to read. This is why I indented the C# statements in Listing 4-7; I find that organizing the statements to match the 
structure of the HTML I am generating makes it easier to figure out what is going on.

Understanding the Built-in Modules
The ASP.NET framework contains a number of built-in modules, many of which support the core platform services 
that I describe in Part 3 of this book. Some of these modules define events that you can handle to get fine-grained 
information about their activities, although for the most part, you interact with the functionality they provide through 
the context objects that I described in Chapter 3. In this section, I am going to show you how to enumerate the 
modules, explain what each of them does, and describe the events that some of them define. To generate the list of 
modules, I have added a new action method to the Home controller, as shown in Listing 4-9.

Listing 4-9.  Adding an Action Method to the HomeController.cs File 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Mvc;
using SimpleApp.Models;
 
namespace SimpleApp.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            return View(GetTimeStamps());
        }
 
        [HttpPost]
        public ActionResult Index(Color color) {
            Color? oldColor = Session["color"] as Color?;
            if (oldColor != null) {
                Votes.ChangeVote(color, (Color)oldColor);
            } else {
                Votes.RecordVote(color);
            }
            ViewBag.SelectedColor = Session["color"] = color;
            return View(GetTimeStamps());
        }
 
        public ActionResult Modules() {
            var modules = HttpContext.ApplicationInstance.Modules;
            Tuple<string, string>[] data =
                modules.AllKeys
                    .Select(x => new Tuple<string, string>(
                        x.StartsWith("__Dynamic") ? x.Split('_',',')[3] : x,
                        modules[x].GetType().Name))
                    .OrderBy(x => x.Item1)



Chapter 4 ■ Modules

73

                    .ToArray();
            return View(data);
        }
 
        private List<string> GetTimeStamps() {
            return new List<string> {
                string.Format("App timestamp: {0}",
                    HttpContext.Application["app_timestamp"]),
                string.Format("Request timestamp: {0}", Session["request_timestamp"]),
            };
        }
    }
}
 

The new action method is called Modules, and it uses LINQ to generate an array of Tuple<string, string> 
objects from the module objects returned by the HttpApplication.Module property. Modules registered using the 
PreApplicationStartMethod URL are done so using the fully qualified class name prefixed with __Dynamic_, and the 
LINQ methods locate and reformat the names to make them more readable. The result is an array of tuples that are 
sorted by name that I pass to the View method, which tells the MVC framework to render the view default associated 
with the action method.

Tip■■   Notice that to get the HttpApplication object, I have to use the HttpContext convenience property (defined by 
the Controller base class) to get an HttpContext object and then read the ApplicationInstance property. I described 
the convenience context objects and the convenience properties available in Chapter 3.

To create this view, right-click the Modules action method in the code editor and select Add View from the pop-up 
menu. Ensure View Name is set to Modules, select Empty (without model) for Template, and uncheck the option 
boxes. Click Add to create the Views/Home/Modules.cshtml file and add the markup shown in Listing 4-10.

Listing 4-10.  The Contents of the Modules.cshtml File

@model Tuple<string, string>[]
@{
    Layout = null;
}
 
<!DOCTYPE html>
 
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Modules</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
</head>
<body class="container">
    <table class="table table-bordered table-striped">
        <thead>
            <tr><th>Name</th><th>Type</th></tr>
        </thead>



Chapter 4 ■ Modules

74

        <tbody>
            @foreach (Tuple<string, string> x in Model) {
                <tr><td>@x.Item1</td><td>@x.Item2</td></tr>
            }
        </tbody>
    </table>
</body>
</html>
 

The view consists of a table element that I have styled using Bootstrap and that contains a row for each of the 
Tuple objects passed from the controller. You can see the list of built-in modules by starting the application and 
requesting the /Home/Modules URL, as illustrated by Figure 4-7.

Figure 4-7.  Displaying a list of the built-in modules



Chapter 4 ■ Modules

75

It can be hard to read the details of the modules from the figure, so I have repeated the information in Table 4-7 
and described each module.

Table 4-7.  The Modules in an ASP.NET Framework Application

Name Type

AnonymousIdentification This module is implemented by the System.Web.Security.
AnonymousIdentificationModule class and is responsible for uniquely identifying 
requests so that features such as user data can be used even when the user has not 
been authenticated.

DefaultAuthentication This module is implemented by the System.Web.Security.
DefaultAuthenticationModule class and is responsible for ensuring that the 
User property of the HttpContext object is set to an object that implements the 
IPrincipal interface if this has not been done by one of the other authentication 
modules. See Part 3 for details of authentication.

FileAuthorization This module is implemented by the System.Web.Security.
FileAuthorizationModule class and ensures that the user has access to the file the 
request relates to when Windows authentication is used. I describe authentication 
in Part 3, but I don’t describe Windows authentication in this book because it is not 
widely used.

FormsAuthentication This module is implemented by the System.Web.Security.
FormsAuthenticationModule class and sets the value of the HttpContext.User 
property when forms authentication is used. I explain authentication in Part 3.

CommonModules.InfoModule This is one of the example modules I created earlier in the chapter.

OutputCache This module is implemented by the System.Web.Caching.OutputCacheModule 
class and is responsible for caching responses sent to the browser. I explain how 
the ASP.NET framework caching features work in Chapters 11 and 12.

PageInspectorHttpModule This module supports the Visual Studio Page Inspector feature, which allows for 
HTML and CSS content to be debugged within Visual Studio. I don’t describe this 
feature and find that the developer tools in modern web browsers are more useful.

Profile This module is implemented by the System.Web.Profile.ProfileModule class 
and is responsible for associating user profile data with a request. See Part 3 for 
details of authentication. (This module supports the obsolete Membership API.)

RoleManager This module is implemented by the System.Web.Security.RoleManagerModule 
class and is responsible for assigning details of the roles that a user has been 
assigned to a request. (This module supports the obsolete Membership API.)

ScriptModule-4.0 This module is implemented by the System.Web.Handlers.ScriptModule class and 
is responsible for supporting Ajax requests. This module has been outmoded by 
support for Ajax requests in the MVC framework and, more recently the Web API.

ServiceModel-4.0 This module is implemented by the System.ServiceModel.Activation.
ServiceHttpModule class. This module is used to activate ASP.NET web services, 
which have been outmoded by the MVC framework and the Web API.

Session This module is implemented by the System.Web.SessionState.
SessionStateModule class and is responsible for associating session data with a 
request. See Chapter 10 for details of using session data.

(continued)



Chapter 4 ■ Modules

76

Tip■■  S ome of the modules that are described in Table 4-7 are part of the membership system, which provides  
authentication and user management features. This has been replaced with the Identity API, which I describe in Part 3.

Some of the built-in modules define events that can be handled to receive notifications when important changes 
occur. I have listed these modules and their events in Table 4-8.

Table 4-7.  (continued)

Name Type

Timer This is the TimerModule class that I created earlier in the chapter.

Total This is the TotalTimeModule class that I created earlier in the chapter.

UrlAuthorization This module is implemented by the System.Web.Security.
UrlAuthorizationModule class and ensures that users are authorized to access the 
URLs they request.

UrlMappingsModule This module is implemented by the System.Web.UrlMappingsModule class and 
is responsible for implementing the URL Mappings feature, which is not used in 
MVC framework applications.

UrlRoutingModule-4.0 This module is implemented by the System.Web.Routing.UrlRoutingModule class 
and is responsible for implementing the URL routing feature.

WebPageHttpModule This module intercepts requests for MVC framework view files and displays an 
error when they are asked for (for example with a URL for /Views/Home/Index.
cshtml). Views can be rendered only as a result of a URL that targets an action 
method in a controller.

WindowsAuthentication This module is implemented by the System.Web.Security.
WindowsAuthenticationModule class and is responsible for setting the value of 
the HttpContext.User property when Windows authentication is used. I don’t 
describe Windows authentication in this book because it is no longer widely used.



Chapter 4 ■ Modules

77

The most widely used events are those defined by the Session module because they allow applications to 
associate default state data with sessions when they are created. I explain how ASP.NET sessions and state data work 
in Chapter 10.

Summary
In this chapter, I described the role that modules play in ASP.NET request handling. I showed you how to create 
modules by implementing the IHttpModule interface and how to register those modules with ASP.NET, both through 
the Web.config file and by using the PreApplicationStartMethod assembly attribute. I showed you how modules can 
provide services by defining events and demonstrated the process for locating another module and creating an event 
handler. I completed the chapter by describing the built-in modules, many of which provide services that I describe 
in Part 3 of this book. In the next chapter, I describe the handler component, which is responsible for generating 
responses for HTTP requests.

Table 4-8.  The Built-in Modules That Define Events

Module Description

AnonymousIdentification Defines the event Creating, which provides an opportunity to override 
the identification. The Creating event sends an instance of the 
AnonymousIdentificationEventArgs class to event handlers.

DefaultAuthentication This module defines the Authenticate event that is triggered when 
the module sets the User property and that sends an instance of the 
DefaultAuthenticationEventArgs class to event handlers.

FormsAuthentication This module defines the Authenticate event that lets you override the value of the 
User property. Event handlers are sent a FormsAuthenticationEventArgs object.

Profile The MigrateAnonymous event is triggered when an anonymous user logs in and sends 
a ProfileMigrateEventArgs object to handlers. The Personalize event is triggered 
when the profile data is being associated with the request and provides an opportunity 
to override the data that is used (handlers are sent a ProfileEventArgs object).

RoleManager This module defines the GetRoles event that allows you to override the 
role information associated with a request. Event handlers are sent a 
RoleManagerEventArgs object.

Session The Start event is triggered when a new session is started, and the End event is triggered 
when an event expires. Both events sent standard EventArgs objects to handlers.



79

Chapter 5

Handlers

Handlers are responsible for generating the response content for an HTTP request. In this chapter, I explain how 
handlers generate content, demonstrate how to create custom handlers, and show you how modules can provide 
services to handlers. Table 5-1 summarizes this chapter.

Table 5-1.  Chapter Summary

Problem Solution Listing

Create a handler. Implement the IHttpHandler interface. 1–3

Register a handler  
using a URL route.

Create an implementation of the IRouteHandler interface that  
returns the handler from its GetHttpHandler method and use it as  
an argument to the RouteCollection.Add method.

4

Register a handler  
using the Web.config file.

Add handlers to the system.webServer/handlers section. 5, 6

Create a handler that generates  
content asynchronously.

Derive from the HttpTaskAsyncHandler class. 7, 8

Provide a service from  
one module to another.

Define events and use a declarative interface. 9–15

Control the instantiation  
of handler classes.

Create a custom handler factory. 16–21

Preparing the Example Project
I am going to continue using the SimpleApp project I created in Chapter 2 and have been using ever since. I defined 
three modules that add fragments of HTML to the response in Chapter 4, which has the effect of cluttering up the 
response in the browser window and which I don’t need in this chapter. Listing 5-1 shows how I commented out the 
module registration elements in the Web.config file.

Listing 5-1.  Disabling Modules in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />



Chapter 5 ■ Handlers

80

     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <!--<add name="Timer" type="SimpleApp.Infrastructure.TimerModule"/>-->
      <!--<add name="Total" type="SimpleApp.Infrastructure.TotalTimeModule"/>-->
    </modules>
  </system.webServer>
</configuration>
 

Listing 5-2 shows how I commented out the PreApplicationStartMethod in the ModuleResigstration.cs file in 
the CommonModules project.

Listing 5-2.  Disabling the Module in the ModuleRegistration.cs File

using System.Web;
 
//[assembly: PreApplicationStartMethod(typeof(CommonModules.ModuleRegistration),
//    "RegisterModule")]
 
namespace CommonModules {
    public class ModuleRegistration {
 
        public static void RegisterModule() {
            HttpApplication.RegisterModule(typeof(CommonModules.InfoModule));
        }
    }
} 

Adding the System.Net.Http Assembly
Later in the chapter, I will be using the System.Net.Http.HttpClient class that is defined in the System.Net.Http 
assembly. The assembly isn’t added to ASP.NET projects by default, so select the SimpleApp project in the Solution 
Explorer and then select Add Reference from the Visual Studio Project menu; then locate the System.Net.Http 
assembly in the Assemblies ➤ Framework section and check the box next to it, as shown in Figure 5-1. Click the  
Add button to add the assembly reference and close the dialog box.



Chapter 5 ■ Handlers

81

ASP.NET Handlers
As part of the request handling life cycle, ASP.NET selects a handler to generate the content that will be returned to the 
client. The ASP.NET platform doesn’t care what form the content takes or what process the handler uses to generate 
the content; it just treats the content as an opaque chunk of data that needs to be sent to the client at the end of the 
request life cycle. This opacity is the key to how ASP.NET is able to support different approaches to web application 
development: There are handlers for the MVC framework, Web Forms, SignalR, and the Web API, and the ASP.NET 
platform treats them all equally. Table 5-2 puts handlers into context.

Figure 5-1.  Adding the System.Net.Http assembly to the project 

Table 5-2.  Putting Handlers in Context

Question Answer

What are they? Handlers are the ASP.NET request handling component that is responsible for generating 
the response content for requests.

Why should I care? Handlers are one of the key extensibility points of the ASP.NET platform and can be used to 
customize request handling for existing technology stacks or to create completely new ones.

How is it used by the  
MVC framework?

The MVC framework uses a handler to manage the process of selecting and invoking an 
action method and rendering a view to generate response content.

Understanding Handlers in the Request Life Cycle
A common source of confusion when working with the ASP.NET platform is the difference between modules and 
handlers, so it is important I explain the role of each component before digging into the details of how handlers work.

The best way to understand each component is within the scope of the request life cycle. As I explained in 
Chapter 4, modules have two roles in request handling. They can be used flor diagnosis and debugging, or they can 
provide services used by other components. The modules I created in Chapter 4 fall into the diagnosis category: They 



Chapter 5 ■ Handlers

82

added fragments of HTML to the response that provided insight into how the request was processed. By contrast, 
most of the built-in modules that come with ASP.NET provide services, such as caching, security, or the management 
of state data. As I explained in Chapter 1, these are the services that you consume within MVC framework controllers 
and views, as shown in Figure 5-2.

Figure 5-2.  The relationship between module services and MVC framework controllers

Figure 5-3.  Showing the handler in the request life cycle

This figure is a refinement of one I showed you in Chapter 1, expanded to show more details about the ASP.
NET components and request life cycle. As the figure illustrates, modules are instantiated at the start of the request 
handling process, and they set up services that are consumed through the ASP.NET context objects by the MVC 
framework controller and view in order to generate the response that will be sent to the client.

In Figure 5-1, I have shown the MVC framework programmer’s view of the controller and view, but, as you may 
have guessed, the MVC functionality is integrated into the ASP.NET platform through a handler, as shown in Figure 5-3.



Chapter 5 ■ Handlers

83

The first thing to notice is that there are multiple modules for each request but only one handler. The reason I am 
being so emphatic about the relationship between these components is because I want to be clear about they mesh 
with the request life-cycle events: The modules are created as soon as the request life cycle begins, but the selection 
and creation of the handler are built right into the life cycle, as shown in Figure 5-4.

Figure 5-4.  The relationship between life-cycle events, modules, and handlers

The MapRequestHandler event is triggered before the ASP.NET platform locates the handler that will generate 
the content for the request, the process for which I describe in the “Creating a Handler” section later in this chapter. 
The PostMapRequestHandler event is triggered once the handler has been identified and instantiated. However, the 
handler isn’t asked to generate the content until the PreRequestHandlerExecute event is triggered, which means that 
modules have an opportunity to respond to the handler selection and provide services that are unique to that handler, 
as shown in the figure. You’ll see how this all works in the “Targeting a Specific Handler” section later in this chapter. 
(Modules can also override the handler selection process, as described in Chapter 6.)

Understanding Handlers
Handlers are classes that implement the System.Web.IHttpHandler interface, which defines the two methods that I 
have described in Table 5-3.

Table 5-3.  The Members Defined by the IHttpHandler Interface

Name Description

ProcessRequest(context) This method is called when the ASP.NET framework wants the handler to generate 
a response for a request. The parameter is an HttpContext object, which provides 
access to details of the request.

IsReusable This property tells the ASP.NET framework whether the handler can be used to handle 
further requests. If the property returns false, then the ASP.NET framework will 
create new instances for each request. In most situations, returning a value of true 
doesn’t mean that handlers will be reused unless you implement a custom handler 
factory, which I describe in the “Custom Handler Factories” section of this chapter.



Chapter 5 ■ Handlers

84

Table 5-4.  The Request Life-Cycle Events Relevant to Handlers

Name Description

MapRequestHandler 
PostMapRequestHandler

MapRequestHandler is triggered when the ASP.NET framework wants to locate 
a handler for the request. A new instance of the handler will be created unless 
an existing instance declares it can be reused. The PostMapRequestHandler 
event is triggered once the handler has been selected.

PreRequestHandlerExecute 
PostRequestHandlerExecute

These events are triggered immediately before and after the call to the 
handler ProcessRequest method.

The ProcessRequest method is passed an HttpContext object, which can be used to inspect the request and the 
state of the application through the properties I described in Chapter 3.

Handlers can generate any kind of content that can be delivered over HTTP, and the ASP.NET platform does 
not impose any constraints on how the content is created. ASP.NET includes a set of default handlers that support 
the Web Forms, the MVC framework, SignalR, and Web API technology stacks, but custom handlers can be used to 
support new kinds of applications or data.

Handlers and the Life-Cycle Events
In Figure 5-3, I explained that handler selection and content generation are part of the request life cycle, but I 
describe the significant events from the perspective of modules. Table 5-4 describes the key life-cycle events from the 
perspective of the handler.

The life cycle of a handler is interwoven with the request and module life cycles. This may seem over 
complicated, but it provides for flexible interactions between handlers and modules (or the global application class if 
that’s where you have defined your event handlers). All of this will start to make more sense as you see some examples 
of handlers and the way they can be used.

The MapRequestHandler and PostMapRequestHandler events are different from the other pairs of events in the 
life cycle. Normally, the first event in a pair is a request for a module to provide a service, and the second event signals 
that phase of the life cycle is complete. So, for example, the AcquireRequestState event is a request for modules that 
handle state data to associate data with the request, and the PostAcquireRequestState event signals that all of the 
modules that handled the first event have finished responding.

The MapRequestHandler event isn’t an invitation for a module to supply a handler for a request; that’s a task that 
ASP.NET handles itself, and the event just signals that the selection is about to be made (a process I describe in the 
next section). The PostMapRequestHandler event signals that the handler has been selected, which allows modules to 
respond to the handler choice—generally by setting up services or data specific to the chosen handler.

The handler’s ProcessRequest method is called between the PreRequestHandlerExecute and 
PostRequestHandlerExecute events. Modules can use these events as the last opportunity to manipulate the context 
objects before the content is generated by the handler and the first opportunity to manipulate the response once the 
handler is done.



Chapter 5 ■ Handlers

85

Creating a Handler
It is time to create a handler now that you understand the purpose of handlers and the context in which they exist. I 
created a class file called DayOfWeekHandler.cs in the Infrastructure folder and used it to define the handler shown 
in Listing 5-3.

Listing 5-3.  The Contents of the DayOfWeekHandler.cs File

using System;
using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class DayOfWeekHandler: IHttpHandler {
 
        public void ProcessRequest(HttpContext context) {
            string day = DateTime.Now.DayOfWeek.ToString();
 
            if (context.Request.CurrentExecutionFilePathExtension == ".json") {
                context.Response.ContentType = "application/json";
                context.Response.Write(string.Format("{{\"day\": \"{0}\"}}", day));
            } else {
                context.Response.ContentType = "text/html";
                context.Response.Write(string.Format("<span>It is: {0}</span>", day));
            }
        }
 
        public bool IsReusable {
            get { return false; }
        }
    }
}
 

When content is required for a request, the ASP.NET platform calls the ProcessRequest method and provides the  
handler with an HttpContext object. After that, it is up to the handler to figure out what’s needed; that can be a 
complex process such as the one used by the MVC framework to locate and invoke an action method and render a view,  
or as simple as generating simple string responses, which is what this example handler does.

I want to demonstrate that the ASP.NET platform doesn’t restrict the content that the handler generates, so I use 
the HttpResponse.CurrentExecutionFilePathExtension property to detect requests for URLs whose file component 
ends with .json and return the current day of the week as JSON data. For all other requests, I assume that the client 
requires a fragment of HTML.

Note■■  T he JavaScript Object Notation (JSON) format is commonly used in web applications to transfer data using 
Ajax requests. The structure of JSON is similar to the way that JavaScript data values are defined, which makes it easy 
to process in the browser. I don’t get into the details of JSON in this book, but I dig into the details of generating and 
processing JSON data in my Pro ASP.NET MVC Client Development book, which is published by Apress.



Chapter 5 ■ Handlers

86

Registering a Handler Using URL Routing
Handlers must be registered before they can be used to generate content for requests, and there are two ways in 
which this can be done. The firs technique for registering a handler is to use the routing system. In Listing 5-4, you 
can see how I have edited the RouteConfig.cs file to set up a route that matches URLs that start with /handler to my 
DayOfWeekHandler class.

Listing 5-4.  Setting Up a Route for a Custom Handler in the RouteConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using SimpleApp.Infrastructure;
 
namespace SimpleApp {
    public class RouteConfig {
        public static void RegisterRoutes(RouteCollection routes) {
            routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 
            routes.Add(new Route("handler/{*path}",
                new CustomRouteHandler {HandlerType = typeof(DayOfWeekHandler)}));
 
            routes.MapRoute(
                name: "Default",
                url: "{controller}/{action}/{id}",
                defaults: new { controller = "Home", action = "Index",
                    id = UrlParameter.Optional }
            );
        }
    }
 
    class CustomRouteHandler : IRouteHandler {
 
        public Type HandlerType { get; set; }
             
        public IHttpHandler GetHttpHandler(RequestContext requestContext) {

return (IHttpHandler)Activator.CreateInstance(HandlerType);
        }
    }
}
 

The RouteCollection.Add method creates a route and associates it with an implementation of the 
IRouteHandler interface, which defines the GetHttpHandler method. This method is responsible for returning an 
instance of the IHttpHandler interface that will be used to generate content for the request. My implementation of 



Chapter 5 ■ Handlers

87

IRouteHandler is configured with a C# type that I instantiate using the System.Activator class. This allows me to tie a 
specific custom handler to a URL pattern, like this:
 
...
routes.Add(new Route("handler/{*path}",
    new CustomRouteHandler {HandlerType = typeof(DayOfWeekHandler)}));
... 

Registering a Handler Using the Configuration File
Using the routing system to set up custom handlers is workable, but it isn’t the approach that I use in my own projects. 
Instead, I use the Web.config file to register my handlers, in part because not all ASP.NET projects use the routing 
system (and, in part, out of habit because I have been writing web applications for a long time, and the routing system 
is a relatively new addition to ASP.NET). Listing 5-5 shows the additions I made to the Web.config file to register my 
custom handler.

Listing 5-5.  Registering a Handler in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <!--<add name="Timer" type="SimpleApp.Infrastructure.TimerModule"/>-->
      <!--<add name="Total" type="SimpleApp.Infrastructure.TotalTimeModule"/>-->
    </modules>
    <handlers>
      <add name="DayJSON" path="/handler/*.json" verb="GET"
              type="SimpleApp.Infrastructure.DayOfWeekHandler"/>
      <add name="DayHTML" path="/handler/day.html" verb="*"
              type="SimpleApp.Infrastructure.DayOfWeekHandler"/>
    </handlers>
  </system.webServer>
</configuration>
 

Handlers are registered in the system.webServer/handlers section of the Web.config file, through the use of the 
add element, which defines the attributes shown in Table 5-5. (The set of handlers is a configuration collection, which I 
explain in Chapter 9 when I describe the ASP.NET configuration system in detail.)



Chapter 5 ■ Handlers

88

Tip■■  S ome additional attributes relate to IIS and file access. They are not often used, and I don’t describe them in this 
book, but you can get details at http://msdn.microsoft.com/en-us/library/ms691481(v=vs.90).aspx.

You can be as general or as specific as you want when you register a custom handler, and you can create any 
number of configuration entries for each handler. I created two entries in the Web.config file to set up the new 
handler. This isn’t essential for such a simple handler, but I wanted to demonstrate that a handler can be set up to 
support multiple types of request. The first entry registers the custom handler to deal with requests with URLs that 
start with /handler and have the JSON extension and are made using the GET method. The second entry registers the 
same handler class, but only for requests made using any HTTP method for the /handler/day.html URL.

There is one more configuration step, and that’s to stop the URL routing feature from intercepting requests that 
I want to go to my custom handler. The default routing configuration that Visual Studio adds to ASP.NET projects 
assumes that all incoming requests will routed and sends a 404 – Not Found error to the client when a request can’t 
be matched to a route. To avoid this problem, I have edited the App_Start/RouteConfig.cs file to tell the routing 
system to ignore any requests intended for my custom handler, as shown in Listing 5-6.

Listing 5-6.  Ignoring Requests for the Custom handler in the RouteConfig.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using SimpleApp.Infrastructure;
 
namespace SimpleApp {
    public class RouteConfig {
        public static void RegisterRoutes(RouteCollection routes) {
            routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 
            //routes.Add(new Route("handler/{*path}",
            //    new CustomRouteHandler {HandlerType = typeof(DayOfWeekHandler)}));
 
            routes.IgnoreRoute("handler/{*path}");
 

Table 5-5.  The Attributes Defined by the handlers/add Attribute

Name Description

name Defines a name that uniquely identifies the handler.

path Specifies the URL path for which the handler can process.

verb Specifies the HTTP method that the handler supports. You can specify that all methods are supported 
by using an asterisk (*), specify that a single method is supported (GET), or use comma-separated values 
for multiple methods ("GET,POST"). When using comma-separated values, be sure not to use spaces 
between values.

type Specifies the type of the IHttpHandler or IHttpHandlerFactory implementation class. (I describe the 
IHttpHandlerFactory interface in the “Custom Handler Factories” section later in this chapter.)

http://msdn.microsoft.com/en-us/library/ms691481(v=vs.90).aspx


Chapter 5 ■ Handlers

89

            routes.MapRoute(
                name: "Default",
                url: "{controller}/{action}/{id}",
                defaults: new { controller = "Home", action = "Index",
                    id = UrlParameter.Optional }
            );
        }
    }
 
    class CustomRouteHandler : IRouteHandler {
 
        public Type HandlerType { get; set; }

        public IHttpHandler GetHttpHandler(RequestContext requestContext) {
            return (IHttpHandler)Activator.CreateInstance(HandlerType);
        }
    }
}
 

The RouteCollection.IgnoreRoute method tells the routing system to ignore a URL pattern. In the listing, I used 
the IgnoreRoute method to exclude any URL whose first segment is /handler. When a URL pattern is excluded, the 
routing system won’t try to match routes for it or generate an error when there is no route available, allowing the ASP.
NET platform to locate a handler from the Web.config file.

Testing the Handler
To test the custom handler, start the application and request the /handler/day.html URL. This request will select the 
DayOfWeekHandler to generate the content, and the handler will return an HTML fragment, as shown in Figure 5-5.

Figure 5-5.  Generating an HTML fragment from the custom handler

The custom handler will also generate a JSON response. To test this, you can request any URL that starts with 
/handler and ends with .json, such as /handler/day.json. Internet Explorer won’t display JSON content in the 
browser window, and you will be prompted to open a file that contains the following content:
 

{"day": "Tuesday"} 



Chapter 5 ■ Handlers

90

Creating Asynchronous Handlers
If your handler needs to perform asynchronous operations, such as making a network request, for example, then you 
can create an asynchronous handler. Asynchronous handlers prevent a request handling thread from waiting for an 
operation to complete, which can improve the overall throughput of a server.

Note■■  A synchronous programming is an advanced topic that is beyond the scope of this book. Don’t use asynchronous 
features unless you understand how they work because it is easy to get into trouble. If you want more details about the 
.NET support for asynchronous programming, then see my Pro .NET Parallel Programming in C# book, which is published 
by Apress.

Asynchronous handlers implement the IHttpAsyncHandler interface, but this interface follows the old 
style of .NET asynchronous programming of having Begin and End methods and relying on IAsyncResult 
implementations. C# and .NET have moved on in recent years, and a much simpler approach is to derive the handler 
from the HttpTaskAsyncHandler class, which allows the use of Task objects and the async and await keywords. 
To demonstrate creating an asynchronous handler, I created a class file called SiteLengthHandler.cs in the 
Infrastructure folder and used it to define the handler shown in Listing 5-7.

Listing 5-7.  The Contents of the SiteLengthHandler.cs File

using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
 
namespace SimpleApp.Infrastructure {
 
    public class SiteLengthHandler : HttpTaskAsyncHandler {
 
        public override async Task ProcessRequestAsync(HttpContext context) {
            string data = await new HttpClient().GetStringAsync("http://www.apress.com");
            context.Response.ContentType = "text/html";
            context.Response.Write(string.Format("<span>Length: {0}</span>",
                data.Length));
        }
    }
}
 

Asynchronous handlers override the ProcessRequestAsync method, which is passed an HttpContext object and 
which must return a Task that represents the asynchronous operation. I have annotated the method with the async 
keyword, which allows me to use await in the method body and avoid working directly with Tasks.

Tip■■  T he await and async keywords are recent additions to C# and are processed by the compiler to standard Task 
Parallel Library objects and methods.

http://www.apress.com/


Chapter 5 ■ Handlers

91

My example handler uses the HttpClient class to make an asynchronous HTTP request to www.apress.com and 
determine how many characters the result contains. In real projects, a more likely asynchronous operation would be 
to read from a file or query a database, but I want to keep this example as simple as possible. Asynchronous handlers 
are registered in just the same way as regular handlers, as shown in Listing 5-8.

Listing 5-8.  Registering the Asynchronous Handler in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <!--<add name="Timer" type="SimpleApp.Infrastructure.TimerModule"/>-->
      <!--<add name="Total" type="SimpleApp.Infrastructure.TotalTimeModule"/>-->
    </modules>
    <handlers>
      <add name="DayJSON" path="/handler/*.json" verb="GET"
              type="SimpleApp.Infrastructure.DayOfWeekHandler"/>
      <add name="DayHTML" path="/handler/day.html" verb="*"
              type="SimpleApp.Infrastructure.DayOfWeekHandler"/>
      <add name="SiteLength" path="/handler/site" verb="*"
              type="SimpleApp.Infrastructure.SiteLengthHandler"/>
    </handlers>
  </system.webServer>
</configuration>

Tip■■   I don’t need to add an IgnoreRoute method call to the RouteConfig.cs file for this handler because the URL it 
supports is already covered by the URL pattern that I used in Listing 5-6.

To test the asynchronous handler, start the application and request the /handler/site URL. The exact length of 
the content returned from www.apress.com changes often, but you can see an example of the output in Figure 5-6.

http://www.apress.com/
http://www.apress.com/


Chapter 5 ■ Handlers

92

Creating Modules That Provide Services to Handlers
Now that you have seen the basic mechanism for defining a registering a handler, it is time to show you how to 
coordinate the actions of modules and handlers within an ASP.NET application.

Modules can provide services to handlers by assigning data values to the context objects. You can set a value for 
one of the predefined context object properties, such as HttpContext.Session, for example, if you are implementing 
a session state feature. Using the predefined properties generally means you are replacing one of the built-in features, 
but a module can also pass arbitrary data to the handler using the HttpContext.Items property. The Items property 
returns an IDictionary implementation that can be used to store any data that the handler requires access to.

Tip■■   If you are replacing one of the built-in services, then you will need to disable the service’s module in one of the 
ASP.NET configuration files that are outside of the project. I explain how these files work and tell you how to find them  
in Chapter 9.

To demonstrate how the Items property can be used, I created a class file called DayModule.cs in the 
Infrastructure folder and used it to define the module shown in Listing 5-9.

Listing 5-9.  The Contents of the DayModule.cs File

using System;
using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class DayModule : IHttpModule {
 
        public void Init(HttpApplication app) {
            app.BeginRequest += (src, args) => {
                app.Context.Items["DayModule_Time"] = DateTime.Now;
            };
        }
 
        public void Dispose() {
            // nothing to do
        }
    }
}
 

Figure 5-6.  The content generated by the asynchronous handler



Chapter 5 ■ Handlers

93

This module handles the BeginRequest life-cycle event and adds data to the Items collection. The name of the 
property is DayModule_Time, and I assign the value of the DateTime.Now property, which is the current date and time. 
In Listing 5-10, you can see how I registered the module in the Web.config file.

Listing 5-10.  Registering the Module in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <!--<add name="Timer" type="SimpleApp.Infrastructure.TimerModule"/>-->
      <!--<add name="Total" type="SimpleApp.Infrastructure.TotalTimeModule"/>-->
      <add name="DayPrep" type="SimpleApp.Infrastructure.DayModule"/>
    </modules>
    <handlers>
      <add name="DayJSON" path="/handler/*.json" verb="GET"
          type="SimpleApp.Infrastructure.DayOfWeekHandler"/>
      <add name="DayHTML" path="/handler/day.html" verb="*"
          type="SimpleApp.Infrastructure.DayOfWeekHandler"/>
      <add name="SiteLength" path="/handler/site" verb="*"
          type="SimpleApp.Infrastructure.SiteLengthHandler"/>
    </handlers>
  </system.webServer>
</configuration> 

Tip■■  T here is no segregation of the data in the Items collection, which means that care had to be taken to ensure that 
two modules don’t assign data using the same keys. The way I do this is to include the name of the module class in the 
Items key, as shown in Listing 5-9, where I used the key DayModule_Time to indicate that the data value was set by the 
DayModule module. 

Consuming the Items Data
The same Items collection that the module uses is available to the handler via the HttpContext.Items property. 
Listing 5-11 shows how I have updated the DayOfWeekHandler so that it consumes the data provided by DayModule.



Chapter 5 ■ Handlers

94

Listing 5-11.  Consuming Module Data in the DayOfWeekHandler.cs File

using System;
using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class DayOfWeekHandler : IHttpHandler {
 
        public void ProcessRequest(HttpContext context) {
 
            if (context.Items.Contains("DayModule_Time")
                    && (context.Items["DayModule_Time"] is DateTime)) {
 
                string day = ((DateTime)context.Items["DayModule_Time"])
                    .DayOfWeek.ToString();
 
                if (context.Request.CurrentExecutionFilePathExtension == ".json") {
                    context.Response.ContentType = "application/json";
                    context.Response.Write(string.Format("{{\"day\": \"{0}\"}}", day));
                } else {
                    context.Response.ContentType = "text/html";
                    context.Response.Write(string.Format("<span>It is: {0}</span>",
                        day));
                }
 
            } else {
                context.Response.ContentType = "text/html";
                context.Response.Write("No Module Data Available");
            }
        }
 
        public bool IsReusable {
            get { return false; }
        }
    }
}
 

Caution is required when retrieving the data from the Items collection. First, you must establish that the data  
has been added to the collection because there is no guarantee that a specific module has been registered in the  
Web.config file. Second, you must ensure that the data is of the expected type because there is nothing to prevent 
modules from adding different data to the Items collection using the same key. Once you have established that the 
data exists and is of the correct type, you can read the value from the Items collection and use it to generate content 
for a request. In the example, I get the DataTime value provided by the module and use it to generate my HTML and 
JSON fragments.

Targeting a Specific Handler
The module that I defined in Listing 5-9 adds data to the Items collection for every request, whether or not the 
handler that is selected will use it. That doesn’t present a problem when the data is as easy to create as the current 
date and time, but it becomes a problem if there is significant time or expense required to obtain or generate the 
data. As an example, you won’t want to query a database in the module to obtain data that will be ignored by most 



Chapter 5 ■ Handlers

95

handlers. To avoid this, you can respond to the PostMapRequestHandler life-cycle event in the module and add data 
to the Items collection only if the handler that ASP.NET has selected is one that will consume the data. In Listing 5-12, 
I have modified the DayModule so that it will add data to the collection only when DayOfWeekHandler is selected to 
generate content for the request.

Listing 5-12.  Targeting a Specific Handler in the DayModule.cs File

using System;
using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class DayModule : IHttpModule {
 
        public void Init(HttpApplication app) {
            app.PostMapRequestHandler += (src, args) => {
                if (app.Context.Handler is DayOfWeekHandler) {
                    app.Context.Items["DayModule_Time"] = DateTime.Now;
                }
            };
        }
 
        public void Dispose() {
            // nothing to do
        }
    }
}
 

The module now handles the PostMapRequestHandler event, which is triggered after the handler has been 
selected to generate content for the request and uses the HttpContext.Handler property to check the type of 
the selected handler. The module adds a DateTime value to the Items collection if the handler is an instance of 
DayWeekHandler, but not otherwise.

Decoupling Components Using Declarative Interfaces
The basic approach shown in Listing 5-12 works, but it creates a situation where the module and handler are tightly 
coupled (meaning that they are harder to test and maintain) and where the module can provide a service only to 
a single handler class. A more flexible approach is to identify handlers that a module will provide services to using 
declarative interfaces, which are regular C# interfaces that define no methods and exist just so a handler can declare 
that it requires a specific service.

To demonstrate the use of a declarative interface, I added a class file called IRequiresDate.cs to the 
Infrastructure folder and used it to define the interface shown in Listing 5-13.

Listing 5-13.  The Contents of the IRequiresDate.cs File

namespace SimpleApp.Infrastructure {
 
    public interface IRequiresDate {
        // this interface is declarative and defines no members
    }
}
 



Chapter 5 ■ Handlers

96

I can then apply the declarative interface to the DayOfWeekHandler class, as shown in Listing 5-14.

Listing 5-14.  Applying the Declarative Interface in the DayOfWeekHandler.cs File

...
namespace SimpleApp.Infrastructure {
    public class DayOfWeekHandler : IHttpHandler, IRequiresDate {
...
 

And finally, I can update DayModule so that it looks for the declarative interface rather than the handler class, as 
shown in Listing 5-15.

Listing 5-15.  Updating the Module to Use the Declarative Interface in the DayModule.cs File

using System;
using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class DayModule : IHttpModule {
 
        public void Init(HttpApplication app) {
            app.PostMapRequestHandler += (src, args) => {
                if (app.Context.Handler is IRequiresDate) {
                    app.Context.Items["DayModule_Time"] = DateTime.Now;
                }
            };
        }
 
        public void Dispose() {
            // nothing to do
        }
    }
}
 

Not only does this make it easier to test and maintain both the handler and the module, it also allows any handler 
that implements the declarative interface to receive the services that the module provides.

Note■■  A  good declarative interface example can be found in the module responsible for session state. As I will 
demonstrate in Chapter 10, you can elect to store session state in a database in order to reduce memory consumption 
on the server and improve data persistence. The process of retrieving session data and associating it with the request 
can slow down request processing, so the session module will undertake this work only if the handler implements the 
IRequiresSessionState interface, which is contained in the System.Web.SessionState namespace. I describe how the 
session state feature works in detail in Chapter 10.



Chapter 5 ■ Handlers

97

Custom Handler Factories
Handler factories are the ASP.NET component responsible for creating instances of handlers to service requests.  
ASP.NET includes a default handler factory that creates a new instance of the handler class, but you can take more control  
of the process by creating a custom factory. There are three reasons you may require a custom handler factory:

You need to take control of the way that custom handler classes are instantiated.•	

You need to choose between different custom handlers for the same request type.•	

You need to reuse handlers rather than create a new one for each request.•	

I’ll show you how to address each of these issues in the sections that follow. Table 5-6 puts custom handler 
factories into context.

Table 5-6.  Putting Handler Factories in Context

Question Answer

What are they? Custom handler factories are responsible for providing instances of handler classes to the 
ASP.NET platform in order to generate content for requests.

Why should I care? Custom handler classes allow you to customize the handler instantiation process to 
address one of the situations listed earlier.

How is it used by the  
MVC framework?

The MVC framework doesn’t use custom handler factories.

Table 5-7.  The Methods Defined by the IHttpHandlerFactory Interface

Name Description

GetHandler(context, verb, url, path) Called when the ASP.NET framework requires a handler for a request 
that matches the Web.confing registration

ReleaseHandler(handler) Called after a request, providing the factory with the opportunity to 
reuse the handler

Tip■■  H andler factories are used only when handlers are selected using the Web.config file registrations. They are not 
involved in the process of creating handlers through the URL routing policy, which I demonstrated in the “Registering a 
Handler Using URL Routing” section earlier in this chapter.

Handler factories are classes that implement the IHttpHandlerFactory interface and that are registered like a 
handler in the Web.config file. The IHttpHandlerFactory interface defines the methods described in Table 5-7.

The GetHandler method is called when the ASP.NET framework requires a handler to process a request. A single 
factory can support multiple types of handler, so the GetHandler method is passed details of the request so that the 
right kind of handler can be returned. I have described each of the parameters to the GetHandler method in Table 5-8.



Chapter 5 ■ Handlers

98

Controlling Handler Instantiation
The simplest kind of handler factory is one that controls the way that custom handlers are instantiated. The best 
example I have seen of this kind of factory is the one that handles requests for Web Form files, which involves a 
complex parsing and compilation process to generate a class that can return a response to the browser. This is similar 
to the process that the MVC framework uses for Razor views but is implemented using a handler factory.

Needing to generate and compile handler classes is pretty unusual; the most common kind of handler that 
requires a factory is one that requires some kind of initialization or a constructor argument for resource configuration, 
such as a database connection or a license key.

To keep the example focused on the handler factory, I am going to demonstrate how to create instances of a 
handler that requires a constructor argument—something that the default handler can’t resolve. I added a class file 
called CounterHandler.cs to the Infrastructure folder and used it to define the handler shown in Listing 5-16.

Listing 5-16.  The Content of the CounterHandler.cs File

using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class CounterHandler : IHttpHandler {
        private int handlerCounter;
 
        public CounterHandler(int counter) {
            handlerCounter = counter;
        }
 
        public void ProcessRequest(HttpContext context) {
            context.Response.ContentType = "text/plain";
            context.Response.Write(string.Format("The counter value is {0}",
                handlerCounter));
        }
 
        public bool IsReusable {
            get { return false; }
        }
    }
}
 

This handler takes an int constructor argument, which prevents it from being instantiated by the built-in handler. 
In Listing 5-17, you can see the contents of the CounterHandlerFactory.cs file, which I added to the Infrastructure 
folder to define a handler factory that can provide the CounterHandler with the constructor argument it needs.

Table 5-8.  The Parameters of the IHttpHandlerFactory.GetHandler Method

Name Description

context An HttpContext object through which information about the request and the state of the application  
can be obtained

verb A string containing the HTTP method used to make the request (GET, POST, and so on)

url A string containing the request URL

path A string that combines the directory to which the application has been deployed and the request URL



Chapter 5 ■ Handlers

99

Listing 5-17.  The Contents of the CounterHandlerFactory.cs File

using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class CounterHandlerFactory : IHttpHandlerFactory {
        private int counter = 0;
 
        public IHttpHandler GetHandler(HttpContext context, string verb,
                string url, string path) {
            return new CounterHandler(++counter);
        }
        public void ReleaseHandler(IHttpHandler handler) {
            // do nothing - handlers are not reused
        }
    }
}
 

ASP.NET doesn’t care how the GetHandler method provides it with a handler, just as long as it does. In this simple 
example, the handler factory increments a counter and uses it as the constructor argument to create a new instance of 
CounterHandler.

Registering the Handler Factory
Handler factories are registered in the Web.config file, just as you would register a handler. When ASP.NET looks 
at the interfaces implemented by the type, it matches from the list of registered handlers and knows the difference 
between IHttpHandler and IHttpHandlerFactory implementations. Listing 5-18 shows the addition I made to the 
Web.config file to register the CounterHandlerFactory.

Listing 5-18.  Registering a Handler Factory in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <!--<add name="Timer" type="SimpleApp.Infrastructure.TimerModule"/>-->
      <!--<add name="Total" type="SimpleApp.Infrastructure.TotalTimeModule"/>-->
      <add name="DayPrep" type="SimpleApp.Infrastructure.DayModule"/>
    </modules>



Chapter 5 ■ Handlers

100

    <handlers>
      <add name="DayJSON" path="/handler/*.json" verb="GET"
           type="SimpleApp.Infrastructure.DayOfWeekHandler"/>
      <add name="DayHTML" path="/handler/day.html" verb="*"
           type="SimpleApp.Infrastructure.DayOfWeekHandler"/>
      <add name="SiteLength" path="/handler/site" verb="*"
           type="SimpleApp.Infrastructure.SiteLengthHandler"/>
      <add name="CounterFactory" path="/handler/counter" verb="*"
          type="SimpleApp.Infrastructure.CounterHandlerFactory"/>
    </handlers>
  </system.webServer>
</configuration>

Tip■■   You don’t register handlers in the Web.config file when they are instantiated by a custom handler factory.

I have registered the handler factory so that it will be used for the URL /handler/counter. You can test the factory 
and handler by starting the application and requesting this URL. The content generated by the handler will display an 
incrementing counter for each request, as shown in Figure 5-7.

Figure 5-7.  Creating instances of handlers in a handler factory

Tip■■   What happens when you create and register a class that implements the IHttpHandler and IHttpHandlerFactory 
interfaces? ASP.NET checks for the IHttpHandler interface first, which means your class will be treated as a handler and 
the methods defined by the IHttpHandlerFactory interface will never be called.

Selecting Handlers Dynamically
The Web.config file can be used to match handlers to combinations of HTTP method and URL, but that is the limit 
of the built-in support for matching handlers to requests. For more complex selections, a handler factory is required. 
Listing 5-19 shows how I have changed the CounterHandlerFactory to instantiate different handlers based on the 
browser that makes the request.



Chapter 5 ■ Handlers

101

Listing 5-19.  Dynamically Selecting Handlers Based on Request Details in the CounterHandlerFactory.cs File

using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class CounterHandlerFactory : IHttpHandlerFactory {
        private int counter = 0;
 
        public IHttpHandler GetHandler(HttpContext context, string verb,
                string url, string path) {
            if (context.Request.UserAgent.Contains("Chrome")) {
                return new SiteLengthHandler();
            } else {
                return new CounterHandler(++counter);
            }
        }
        public void ReleaseHandler(IHttpHandler handler) {
            // do nothing - handlers are not reused
        }
    }
}
 

As I explained earlier, ASP.NET doesn’t care how the handler factory creates handlers, but neither does it care 
which handlers are created. In this case, I use the context objects to get the user agent string that the browser sends 
as part of the HTTP request and select the SiteLengthHandler for requests made by the Google Chrome browser 
users and the CounterHandler otherwise. (I created the SiteLengthHandler in the “Creating Asynchronous Handlers” 
section earlier in this chapter.) You can see the effect of requesting the /handler/counter URL in Internet Explorer 
and Chrome in Figure 5-8.

Figure 5-8.  Selecting handlers dynamically

Reusing Handlers
The IHttpHandler interface defines the IsReusable property, which allows handlers to indicate that they can be used 
to generate content for multiple requests in sequence. The built-in handler factory ignores the IsReuseable property 
value and always creates new handlers for each request.



Chapter 5 ■ Handlers

102

The main situation where reusing handlers is attractive is when they require significant time or resources to 
create, typically because they need to load or generate substantial amounts of data before they are able to generate 
any content. Listing 5-20 shows how I have modified the CounterHandler so that it can be reused, but only for three 
requests. This isn’t a common scenario, but I want to emphasize the way that handler instances can control their own 
reuse through the IsReusable property.

Listing 5-20.  Creating a Reusable Handler in the CounterHandler.cs File

using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class CounterHandler : IHttpHandler {
        private int handlerCounter;
        private int requestCounter = 0;
 
        public CounterHandler(int counter) {
            handlerCounter = counter;
        }
 
        public void ProcessRequest(HttpContext context) {
            requestCounter++;
            context.Response.ContentType = "text/plain";
            context.Response.Write(
                string.Format("The counter value is {0} (Request {1} of 3)",
                    handlerCounter, requestCounter));
        }
 
        public bool IsReusable {
            get { return requestCounter < 2; }
        }
    }
}

Caution■■  T his is an advanced technique that requires knowledge of concurrent programming, which is a topic in its 
own right. See my Pro .NET Parallel Programming in C# for details.

The handler keeps track of the number of requests for which it has generated content and uses this value as the 
basis for the IsReusable property. Listing 5-21 shows the changes I have made to the CounterHandlerFactory to 
support reusable handlers.

Listing 5-21.  Reusing Handlers in the CounterHandlerFactory.cs File

using System.Collections.Concurrent;
using System.Web;
 
namespace SimpleApp.Infrastructure {
    public class CounterHandlerFactory : IHttpHandlerFactory {
        private int counter = 0;
        private int handlerMaxCount = 3;



Chapter 5 ■ Handlers

103

        private int handlerCount = 0;
        private BlockingCollection<CounterHandler> pool
            = new BlockingCollection<CounterHandler>();
         
        public IHttpHandler GetHandler(HttpContext context, string verb,
                string url, string path) {
 
                CounterHandler handler;
                if (!pool.TryTake(out handler)) {
                    if (handlerCount < handlerMaxCount) {
                        handlerCount++;
                        handler = new CounterHandler(++counter);
                        pool.Add(handler);
                    } else {
                        handler = pool.Take();
                    }
                }
                return handler;
        }
        public void ReleaseHandler(IHttpHandler handler) {
            if (handler.IsReusable) {
                pool.Add((CounterHandler)handler);
            } else {
                handlerCount--;
            }
        }
    }
}
 

The handler factory uses a BlockingCollection to maintain a pool of handlers, each of which will be used for three 
requests. The pool contains a maximum of three handlers, and requests are queued up until a handler is available.

Note■■   In reality, the pool can contain more than three handlers because I don’t guard against multiple simultaneous 
requests from creating new handlers if one isn’t available and there is space in the pool.

Summary
In this chapter, I introduced the handler component and explained how it relates to modules and the request 
life-cycle events. I demonstrated how to create and register a custom handler, how to create handlers that perform 
asynchronous operations, and how modules can provide handlers with services. I finished the chapter by exploring 
handler factories, which allow you to control how handlers are created and used. In the next chapter, I describe 
techniques for interrupting the normal flow of the request life cycle.



105

Chapter 6

Disrupting the Request Life Cycle

In previous chapters, I described the ASP.NET request life cycle and explained how the global application class, 
modules, and handlers work together to process requests and generate content. In this chapter, I am going to explain 
how to disrupt the normal flow of a request and take direct control of the life cycle.

Disrupting the life cycle can be useful for optimizing the performance of a web application or taking fine-grained 
control over the way that particular requests are processed. The life cycle is also disrupted when unhandled 
exceptions occur, and knowing the nature of the disruption means you can receive notifications when this happens.

Disrupting the request life cycle can also be useful for changing the behavior of an application without having 
to modify any of its code, through the addition of a module or a handler. There are a lot of badly designed and 
implemented ASP.NET applications in the world, and if you inherit one of them, you may find that making even 
the slightest change triggers unexpected problems that are hard to predict and difficult to debug and test. Such 
applications are brittle, and being able to change the way that requests are handled by adding custom modules or 
handlers can help extend the life of the application. All brittle applications eventually throw up problems that can’t be 
patched, but the techniques I show you in this chapter can help keep things ticking along while a properly designed 
replacement is developed. Table 6-1 summarizes this chapter.

Table 6-1.  Chapter Summary

Problem Solution Listing

Optimize redirections. Call one of the redirection methods defined by the 
HttpResponse class in a module or custom handler.

1–5

Preempt the normal handler selection process. Call the RemapHandler method before the 
MapRequestHandler event has been triggered.

6–8

Transfer a request to a new handler. Call the TransferRequest method. 9–11

Prevent the normal life cycle from completing. Call the CompleteRequest method. 12, 13

Receive notification when the life cycle has been 
disrupted by an exception.

Handle the Error event. 14–16

Preparing the Example Project
I am going to create a new project called RequestFlow for this chapter. To get started, select New Project from 
the File menu to open the New Project dialog window. Navigate through the Templates section to select the 
Visual C# ➤ Web ➤ ASP.NET Web Application template and set the name of the project to Request, as  
shown in Figure 6-1.



Chapter 6 ■ Disrupting the Request Life Cycle

106

Figure 6-1.  Creating the Visual Studio project

Figure 6-2.  Configuring the ASP.NET project

Click the OK button to move to the New ASP.NET Project dialog window. Ensure that the Empty option is selected 
and check the MVC option, as shown in Figure 6-2.



Chapter 6 ■ Disrupting the Request Life Cycle

107

Click the OK button, and Visual Studio will create a new project called RequestFlow.

Adding the Bootstrap Package
Open the console by selecting Package Manager Console from the Tools ➤ Library Package Manager menu and enter 
the following command:
 

Install-Package -version 3.0.3 bootstrap

 
Visual Studio will download and install the Bootstrap library into the RequestFlow project.

Creating the Controller
Right-click the Controllers folder in the Visual Studio Solution Explorer and select Add ➤ Controller from the  
pop-up menu. Select MVC 5 Controller – Empty from the list of options and click the Add button. Set the name to 
be HomeController and click the Add button to create the Controllers/HomeController.cs file. Edit the new file to 
match Listing 6-1.

Listing 6-1.  The Contents of the HomeController.cs File

using System.Web.Mvc;
 
namespace RequestFlow.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            return View();
        }
    }
}
 

The controller contains a single action method, called Index. The action method contains no logic and simply 
returns the result from the View method to have the MVC framework render the default view.

Creating the View
Right-click the Index action method in the code editor and select Add View from the pop-up menu. Ensure that  
View Name is Index, that Template is set to Empty (without model), and that the boxes are unchecked, as shown  
in Figure 6-3.



Chapter 6 ■ Disrupting the Request Life Cycle

108

Figure 6-3.  Creating the view

Click the Add button to create the Views/Home/Index.cshtml file. Edit the file to match Listing 6-2. The view 
simply reports that the content has been rendered from the Index view associated with the Home controller, which is all 
that I will need to demonstrate the techniques for managing request execution.

Listing 6-2.  The Contents of the Index.cshtml File

@{
    Layout = null;
}
 
<!DOCTYPE html>
 
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Index</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
</head>
<body>
    <div class="container">
        <h3 class="text-primary">This is the Home/Index view</h3>
    </div>
</body>
</html>
 



Chapter 6 ■ Disrupting the Request Life Cycle

109

Testing the Example Application
To test the example application, select Start Debugging from the Visual Studio Debug menu. The example application 
displays a simple message in the browser, as shown in Figure 6-4.

Figure 6-4.  Testing the example application

Using URL Redirection
I am going start with a simple technique to demonstrate how you can control request handling to achieve tasks that 
would otherwise be handled deep within the MVC framework. If you have been using the MVC framework for a while, 
you will know that you can redirect requests to alternate URLs by returning the result from methods such as Redirect 
and RedirectPermanent.

The MVC framework provides a set of redirection methods that can target a literal URL, a URL route, or another 
action method, and these redirections can be combined with other logic such that redirections happen only under 
certain circumstances (such as when requests contain particular form data values or originate from mobile devices).

However, in mature projects, the most common reason for adding new redirections to action methods is to hide 
changes in the application structure. An example that I have seen a lot lately comes when a project switches from 
performing authentication locally to relying on a third-party such as Microsoft, Google, or Facebook. This could be 
addressed by changes in the routing configuration, but often the routes become so complex that performing the redirection 
in the controller is seen as the safer option. The action methods that would usually have received the authentication 
requests are replaced with redirections to new URLs that can initiate the third-party authentication process.

Tip■■  I  demonstrate how to authenticate users through third parties in Part 3.

In this section, I am going to explain how redirections normally work in the MVC framework and how you can 
optimize this process by disrupting request execution and perform the redirection in a module. Table 6-2 puts module 
redirection in context.

Table 6-2.  Putting Module Redirection in Context

Question Answer

What is it? Module redirection is the process of intercepting requests and redirecting them in a 
module, rather than letting the request be handled by the MVC framework.

Why should I care? Action methods that perform only redirection incur relatively high overheads that 
can be avoided by using a module.

How is it used by the  
MVC framework?

This technique is about disrupting the normal request life cycle and is not used by 
the MVC framework.



Chapter 6 ■ Disrupting the Request Life Cycle

110

Understanding the Normal Redirection Process
I have added a new action method to the Home controller that contains a redirection, as shown in Listing 6-3.

Listing 6-3.  Adding an Action Method to the HomeController.cs File

using System.Web.Mvc;
 
namespace RequestFlow.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            return View();
        }
 
        public ActionResult Authenticate() {
            return RedirectToAction("Index", "Home");
        }
    }
}
 

The action method I added is called Authenticate, and it represents the scenario that I described: an action 
method whose original implementation has been replaced with a redirection. In this example, I perform the 
redirection by returning the result of the RedirectToAction method, which allows me to specify the names of the 
action method and the controller that the client will be redirected to.

You can see the effect of targeting the Authenticate action method by starting the application and requesting the 
/Home/Authenticate URL in the browser. You can see the sequence of requests to the application and the responses 
that are returned using the browser F12 developer tools (so called because they are accessed by pressing the F12 key), 
as illustrated by Figure 6-5.

Figure 6-5.  Tracing the requests and responses in a redirection



Chapter 6 ■ Disrupting the Request Life Cycle

111

Tip■■  T o see all the requests and responses, you must disable the Clear Entries on Navigate option at the top of the 
developer tools window.

The sequence of requests and responses is exactly like you would expect. The browser asks the server for  
/Home/Authenticate but receives a 302 response, which tells the browser to request a different URL. I specified the  
Index action method in the Home controller, which corresponds to the default URL (/) in the default routing 
configuration, and that’s what the browser is redirected to. The browser makes the second request, and the server 
sends the content generated by the Index action method, which includes link elements for Bootstrap CSS files. The 
sequence is completed when the browser requests and receives the content of CSS files.

If the only thing that an action method is doing is issuing a redirection, then it becomes an expensive operation—
something that is easy to forget about, especially when refactoring a mature application where the focus is on the new 
functionality. The MVC framework is flexible and configurable, and it has to do a lot of work to get to the point where 
the RedirectToAction method in Listing 6-3 is invoked and the result is evaluated. The list includes the following:

Locating and instantiating the controller factory•	

Locating and instantiating the controller activator•	

Locating and instantiating the action invoker•	

Identifying the action method•	

Examining the action method for filter attributes•	

Invoking the action method•	

Invoking the •	 RedirectToAction method

At every stage, the MVC framework has to figure out which implementation is required and usually has to 
create some new objects, all of which takes time and memory. The RedirectToAction method creates a new 
RedirectToRouteResult object, which is evaluated and does the work of performing the redirection.

Simplifying the Redirection Process
The result of all the work that the MVC framework has to go through to produce the RedirectToRouteResult object is  
one of the methods described in Table 6-3 being invoked on the HttpResponse context object associated with the request.

Table 6-3.  The Redirection Methods Defined by the HttpResponse Class

Name Description

Redirect(url) Sends a response with a 302 status code, directing the client to the specified 
URL. The second argument is a bool that, if true, immediately terminates 
the request handling process by calling HttpApplication.CompleteRequest 
(which I describe later in this chapter). The single-argument version is 
equivalent to setting the second parameter to true.

Redirect(url, end)

RedirectPermanent(url) Like the Redirect method, but the response is sent with a 301 status code.

RedirectPermanent(url, end)

RedirectToRoute(name) Sends a response with a 302 status code to a URL generated from a URL route.

RedirectToRoutePermanent(name) Sends a response with a 301 status code to a URL generates from a URL route.



Chapter 6 ■ Disrupting the Request Life Cycle

112

I can avoid having the MVC framework do all of that work by instead performing the redirection in a module. 
To demonstrate how this works, I created a folder called Infrastructure and added to it a class file called 
RedirectModule.cs. You can see the contents of the class file in Listing 6-4.

Listing 6-4.  The Contents of the RedirectModule.cs File

using System;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
 
namespace RequestFlow.Infrastructure {
    public class RedirectModule : IHttpModule {
 
        public void Init(HttpApplication app) {
            app.MapRequestHandler += (src, args) => {
 
                RouteValueDictionary rvd
                    = app.Context.Request.RequestContext.RouteData.Values;
 
                if (Compare(rvd, "controller", "Home")
                    &&  Compare(rvd, "action", "Authenticate")) {
                        string url = UrlHelper.GenerateUrl("", "Index", "Home", rvd,
                           RouteTable.Routes, app.Context.Request.RequestContext, false);
                        app.Context.Response.Redirect(url);
                    }
            };
        }
 
        private bool Compare(RouteValueDictionary rvd, string key, string value) {
            return string.Equals((string)rvd[key], value,
                StringComparison.OrdinalIgnoreCase);
        }
 
        public void Dispose() {
            // do nothing
        }
    }
}
 

This module handles the MapRequestHandler life-cycle event, which means the handler has been selected and 
is about to be asked to generate the content for the request. Prior to this event, the UrlRoutingModule processes the 
request in order to match it to a route and, as part of this process, creates and associates a RequestContext object with 
the HttpRequest instance.



Chapter 6 ■ Disrupting the Request Life Cycle

113

Tip■■  Y ou might be wondering how I know that the UrlRoutingModule processes the request before the  
MapRequestHandler event. In fact, I looked at the source code for the module class and found that the request is  
processed in response to the PostResolveRequestCache event, which proceeds MapRequestHandler in the life cycle  
I described in Chapter 3. You can get the source code for the .NET Framework, including the ASP.NET platform from  
http://referencesource.microsoft.com/netframework.aspx. This is separate from the source code for the MVC 
framework and the Web API, which are available from http://aspnetwebstack.codeplex.com. Be sure to read the licenses 
carefully because there are restrictions on how the source code can be used, especially for the .NET Framework code.

The RequestContext object provides information about the URL route that has matched the request and is 
accessed through the HttpRequest.RequestContext property. The RequestContext class defines the properties 
described in Table 6-4.

Table 6-4.  The Properties Defined by the RequestContext Class

Name Description

HttpContext Returns the HttpContext object for the current request. This isn’t useful in this scenario 
because the HttpContext is used to obtain the RequestContext object.

RouteData Returns a System.Web.Routing.RouteData object that describes the route matches to the 
request by UrlRoutingModule.

It is the RouteData object that gives me access to the information that I need, and I have described the three 
useful properties that RouteData defines in Table 6-5.

Table 6-5.  The Properties defined by the RouteData Class

Name Description

Route Returns the Route object that represents the route that has matched the request.

RouteHandler Returns the IRouteHandler implementation that specifies the IHttpHandler that will generate 
content for the request. See Chapter 5 for an example of using the IRouteHandler interface.

Values Returns a RouteValueDictionary that contains the values extracted from the request to match 
the route variables.

In my module, I use the RouteValueDictionary to determine the controller and action route values, which 
are used by the MVC framework to identify the controller and action method that the request will target. If the values 
match the Authenticate action on the Home controller, then I perform a redirection, like this:
 
...
if (Compare(rvd, "controller", "Home") &&  Compare(rvd, "action", "Authenticate")) {
    string url = UrlHelper.GenerateUrl("", "Index", "Home", rvd,
        RouteTable.Routes, app.Context.Request.RequestContext, false);
    app.Context.Response.Redirect(url);
}
...
 

http://referencesource.microsoft.com/netframework.aspx
http://aspnetwebstack.codeplex.com/


Chapter 6 ■ Disrupting the Request Life Cycle

114

I could have specified the target URL for the redirection as a literal string value, but that would mean my 
module would have to be updated every time the routing configuration for the application changed, which is just 
the kind of thing that leads to brittle applications in the first place. Instead, I have used the UrlHelper class from 
the System.Web.Mvc namespace to generate a URL based on the name of the action method and controller that  
I want to target, as follows:
 
...
if (Compare(rvd, "controller", "Home") &&  Compare(rvd, "action", "Authenticate")) {
    string url = UrlHelper.GenerateUrl("", "Index", "Home", rvd,
        RouteTable.Routes, app.Context.Request.RequestContext, false);
    app.Context.Response.Redirect(url);
}
...
 

Once I have generated the URL from the routing configuration, I call the HttpResponse.Redirect method to send 
the response to the client and terminate any further request handling. Listing 6-5 shows how I registered the module 
in the Web.config file using the same approach I described in Chapter 4.

Listing 6-5.  Registering the Module in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
 
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <add name="Redirect" type="RequestFlow.Infrastructure.RedirectModule"/>
    </modules>
  </system.webServer>
</configuration>
 

To test the module, start the application and request the /Home/Authenticate URL. You can set a debugger 
breakpoint on the Authenticate action method in the controller class to prove that the method isn’t invoked when a 
request is redirected.

Managing Handler Selection
An alternative way to manage request flow is to control the selection of the handler. This allows you to preempt 
the normal handler selection process or to transfer a request from one handler to another. Table 6-6 puts handler 
selection in context.



Chapter 6 ■ Disrupting the Request Life Cycle

115

Table 6-6.  Putting Handler Selection in Context

Question Answer

What is it? Handler selection lets you override the process that would usually match a handler to a request.

Why should I care? Controlling handler selection lets you create applications that are more adaptable and 
flexible than would otherwise be possible.

How is it used by the 
MVC framework?

The MVC framework relies on a module to implement URL routing. The routing module preempts 
handler selection to  ensure that handlers defined by routes are used to process requests—including 
the MvcHttpHandler class, which is the handler for MVC framework requests.

Table 6-7.  The HttpContext Members That Manage Handler Selection

Name Description

CurrentHandler Returns the handler to which the request has been transferred.

Handler Returns the handler originally selected to generate a response for the request.

PreviousHandler Returns the handler from which the request was transferred.

RemapHandler(handler) Preempts the standard handler selection process. This method must be called 
before the MapRequestHandler event is triggered.

Preempting Handler Selection
Preempting the handler selection allows you to explicitly select a handler and bypass the process by which ASP.NET 
locates a handler for a request. The HttpContext class defines several members that relate to handler selection, as 
described by Table 6-7. The RemapHandler method allows me to override the normal selection process and explicitly 
specify the handler that will be used to generate content for the current request.

First, I need to create a handler so that I have something to select with the RemapHandler method. I added a class 
file called InfoHandler.cs to the Infrastructure folder and used it to define the handler shown in Listing 6-6.

Listing 6-6.  The Contents of the InfoHandler.cs File

using System.Web;
 
namespace RequestFlow.Infrastructure {
    public class InfoHandler : IHttpHandler {
 
        public void ProcessRequest(HttpContext context) {
            context.Response.Write("Content generated by InfoHandler");
        }
 
        public bool IsReusable {
            get { return false; }
        }
    }
}
 



Chapter 6 ■ Disrupting the Request Life Cycle

116

I can now create a module that explicitly selects the handler for certain requests. I added a class file called 
HandlerSelectionModule.cs to the Infrastructure folder and used it to define the module shown in Listing 6-7.

Listing 6-7.  The Contents of the HandlerSelectionModule.cs File

using System;
using System.Web;
using System.Web.Routing;
 
namespace RequestFlow.Infrastructure {
    public class HandlerSelectionModule : IHttpModule {
 
        public void Init(HttpApplication app) {
            app.PostResolveRequestCache += (src, args) => {
                if (!Compare(app.Context.Request.RequestContext.RouteData.Values,
                    "controller", "Home")) {
                        app.Context.RemapHandler(new InfoHandler());
                }
            };
        }
 
        private bool Compare(RouteValueDictionary rvd, string key, string value) {
            return string.Equals((string)rvd[key], value,
                StringComparison.OrdinalIgnoreCase);
        }
 
        public void Dispose() {
            // do nothing
        }
    }
}
 

Tip■■  Y ou can also preempt normal handler selection by using the URL routing system, which calls the RemapHandler 
method when it matches a request to a route. This was what happened in Chapter 5 when I registered a handler using a route.

I have used the routing values in order to detect requests that target controllers other than Home. For such 
requests, I preempt the handler selection by calling the RemapHandler method and passing an instance of the handler 
class that I want to use, which is InfoHandler. I have to call the RemapHandler before the MapRequestHandler event 
is triggered, so my module is set up to perform its preemption in response to the PostResolveRequestCache event, 
which preceded MapRequestHandler in the sequence I described in Chapter 3.

In Listing 6-8, you can see that I have registered the module in the Web.config file. I don’t need to register the 
handler because the module instantiates it directly.



Chapter 6 ■ Disrupting the Request Life Cycle

117

Listing 6-8.  Registering a Module in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
 
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <add name="Redirect" type="RequestFlow.Infrastructure.RedirectModule"/>
      <add name="Select" type="RequestFlow.Infrastructure.HandlerSelectionModule"/>
    </modules>
  </system.webServer>
</configuration>
 

You can test the selection preemption by starting the application and requesting a URL such as /Test. This 
request will be matched to the default URL routing configuration in the App_Start/RouteConfig.cs file but doesn’t 
target the Home controller. This means that the HandlerSelectionModule will preempt the normal selection process 
(which would have led to the MVC framework handler being asked to generate content) and force InfoHandler to be 
used instead, as illustrated by Figure 6-6.

Figure 6-6.  Preempting handler selection

Transferring a Request to a Different Handler
Handlers can decide that they are not best suited to generate the content for a request and pass the request on to 
a different handler for processing. This is equivalent to redirecting a request within ASP.NET without sending a 
redirection response to the client and is useful when you need finer-grained control over handler selection than is 
possible through the Web.config registration of handlers. Requests are transferred using the HttpServerUtility.
TransferRequest method, which is available in the overloaded versions described by Table 6-8.



Chapter 6 ■ Disrupting the Request Life Cycle

118

Table 6-8.  The HttpServerUtility TransferRequest Method

Name Description

TransferRequest(url) Transfers the request to the handler for the specified URL, 
which need not be the URL from the current request.

TransferRequest(url, preserve) Transfers the request to the handler for the specified URL. 
The form and query string data are passed to the new 
handler if the preserve argument is true.

TransferRequest(url, preserve, method, headers) Like with the previous version, except that the method 
argument specifies the HTTP method for the transferred 
request, and the headers collection specifies the headers.

TransferRequest 
(url, preserve, method, headers, preserveUser)

Like with the previous version, except that the 
preserveUser argument will preserve the user identity 
associated with the request when set to true. See Part 3 for 
details of user identities.

Tip■■  T he HttpServerUtility class also defines a Transfer method, but this can be used only with Web Forms and 
skips a number of the life cycle events after generating content for a request. Use with caution.

To demonstrate the use of the TransferRequest method, I have modified the InfoHandler class from the 
previous section to transfer the request for a specific URL, as shown in Listing 6-9.

Listing 6-9.  Transferring a Request in the InfoHandler.cs File

using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
 
namespace RequestFlow.Infrastructure {
    public class InfoHandler : IHttpHandler {
 
        public void ProcessRequest(HttpContext context) {
 
            if (context.Request.RawUrl == "/Test/Index") {
                context.Server.TransferRequest("/Home/Index");
            } else {
                context.Response.Write("Content generated by InfoHandler");
            }
        }
 
        public bool IsReusable {
            get { return false; }
        }
    }
}
 



Chapter 6 ■ Disrupting the Request Life Cycle

119

I decide whether to transfer the request based on the value of the HttpRequest.RawUrl property. In a real project, 
I tend to use the routing information as demonstrated in the previous section (see Listing 6-7), but I have used the 
RawUrl property for simplicity in this example.

If the URL that has been requested is /Test/Index, then I obtain an instance of the HttpServerUtility class 
through the HttpContext.Server property and call the TransferRequest method, specifying a URL that will target 
the MVC framework Home controller in the example application. You can see the effect by starting the application and 
requesting the /Test/Index URL. If you monitor the HTTP requests made by the browser using the F12 developer 
tools, you will see that no HTTP redirections are sent to the client. Instead, the client requests the /Test/Index URL 
but gets the content from the /Home/Index URL instead, as shown in Figure 6-7.

Figure 6-7.  Transferring a request from one handler to another

Terminating Requests
The HttpApplication.CompleteRequest method can be used to terminate the normal flow of a request through its 
life cycle and jump straight to the LogRequest event. This technique is useful if you are able to respond to a request 
entirely within a module and don’t want other modules or a handler to alter the response that will be sent to the 
client, essentially bypassing the rest of the application. Table 6-9 summarizes terminating request handling using the 
CompleteRequest method.

Table 6-9.  Terminating Request Handler Context

Question Answer

What is it? The CompleteRequest method terminates the normal request handling 
life cycle and jumps directly to the LogRequest event.

Why should I care? Using the CompleteRequest method stops other modules from processing 
the request and prevents handler selection and content generation.

How is it used by the MVC framework? This method is not used by the MVC framework.

You can use the CompleteRequest method in any situation when you can service the request completely from 
within a module. I use this technique in two main ways: to create special debug URLs that provide insights into the 
application during development and to prevent requests from being processed by a troublesome component in a 
brittle application.



Chapter 6 ■ Disrupting the Request Life Cycle

120

Responding to a Special URL
It can often be helpful to get insight into the overall state of the application during development, especially when 
tracking down bugs. There are some useful tools for understanding how an ASP.NET application is running, some 
which I describe in Chapter 8, but they tend to be general in nature. Sometimes you need a snapshot of specific 
information, and a module can help provide useful insights without requiring a lot of additional development. The 
use of the CompleteRequest method allows you to create modules that service special URLs without touching the rest 
of the application. As a demonstration, I added a class file called DebugModule.cs to the Infrastructure folder and 
used it to define the module shown in Listing 6-10.

Listing 6-10.  The Contents of the DebugModule.cs File

using System.Collections.Generic;
using System.Web;
 
namespace RequestFlow.Infrastructure {
    public class DebugModule : IHttpModule {
        private static List<string> requestUrls = new List<string>();
        private static object lockObject = new object();
 
        public void Init(HttpApplication app) {
 
            app.BeginRequest += (src, args) => {
                lock (lockObject) {
                    if (app.Request.RawUrl == "/Stats") {
                        app.Response.Write(
                            string.Format("<div>There have been {0} requests</div>",
                                requestUrls.Count));
                        app.Response.Write("<table><tr><th>ID</th><th>URL</th></tr>");
                        for (int i = 0; i < requestUrls.Count; i++) {
                            app.Response.Write(
                                string.Format("<tr><td>{0}</td><td>{1}</td></tr>",
                                    i, requestUrls[i]));
                        }
                        app.CompleteRequest();
                    } else {
                        requestUrls.Add(app.Request.RawUrl);
                    }
                }
            };
        }
 
        public void Dispose() {
            // do nothing
        }
    }
}
 



Chapter 6 ■ Disrupting the Request Life Cycle

121

Caution■■   Be sure to disable your debug modules before deploying the application because they can represent a 
security risk. If you need to enable the modules in production to track down live problems (which is something you should 
do only as a last resort for serious issues that you can’t reproduce in the test environment), then make sure you restrict 
access to authorized users with the techniques I described in Part 3.

This module looks for requests for the /Stats URL and responds by generating details of the requests that the 
application has received since it started and then calling the CompleteRequest method to terminate request handling.

For all other requests, the URL that has been asked for is added to a static collection. The collection must be 
static so that all instances of the module class can store details of the requests they are asked to process. ASP.NET 
processes requests concurrently, so I have taken the precaution of using the lock keyword to synchronize access to 
the collection object. Listing 6-11 shows the registration of the module in the Web.config file.

Listing 6-11.  Registering the Module in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
 
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <add name="Redirect" type="RequestFlow.Infrastructure.RedirectModule"/>
      <add name="Select" type="RequestFlow.Infrastructure.HandlerSelectionModule"/>
      <add name="Debug" type="RequestFlow.Infrastructure.DebugModule"/>
    </modules>
  </system.webServer>
</configuration>
 

Caution■■  Y ou should be wary of using synchronization in web applications because it limits the concurrent throughput 
of your servers. The lock keyword in the listing ensures that I get accurate debug data, but it does so by allowing only one 
module instance update the collection at a time. Make sure you disable any modules that rely on synchronization once you 
have finished debugging. See Chapter 8 for details of collecting statistics without causing this kind of performance problem.

You can test the module by starting the application and requesting other URLs such as /Home/Index and  
/Test/Index followed by /Stats. You can see a typical result in Figure 6-8.



Chapter 6 ■ Disrupting the Request Life Cycle

122

Figure 6-8.  The output from a module that services a special URL

Avoiding Brittle Application Components
The second use for the CompleteRequest method is to prevent requests from being processed by some part of a brittle 
application. The details will vary in different applications, but to give a sense of the kind of code I sometimes require, 
I added a class file called DeflectModule.cs to the Infrastructure folder and used it to define the module shown in 
Listing 6-12.

Listing 6-12.  The Contents of the DeflectModule.cs File

using System.Web;
 
namespace RequestFlow.Infrastructure {
    public class DeflectModule : IHttpModule {
         
        public void Init(HttpApplication app) {
            app.BeginRequest += (src, args) => {
                if (app.Request.RawUrl.ToLower().StartsWith("/home")) {
                    app.Response.StatusCode = 500;
                    app.CompleteRequest();
                }
            };
        }
 
        public void Dispose() {
            // do nothing
        }
    }
}
 

The module looks for requests that begin with /Home. When such a request is received, I set the status code to 500, 
which indicates a server error and call the CompleteRequest method to terminate request handling. You can apply this 
technique anywhere in the request life cycle, and, of course, you don’t have to send the client an error message—what’s 
important is that you can use the CompleteRequest method to terminate the request life cycle before the components 
you are concerned about are reached. Listing 6-13 shows the registration of the new module in the Web.config file.



Chapter 6 ■ Disrupting the Request Life Cycle

123

Listing 6-13.  Registering a Module in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
 
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <add name="Redirect" type="RequestFlow.Infrastructure.RedirectModule"/>
      <add name="Select" type="RequestFlow.Infrastructure.HandlerSelectionModule"/>
      <add name="Debug" type="RequestFlow.Infrastructure.DebugModule"/>
      <add name="Deflect" type="RequestFlow.Infrastructure.DeflectModule"/>
    </modules>
  </system.webServer>
</configuration>
 

To test the module, start the application and request the /Home/Index URL. Rather than seeing the view 
associated with the action method, the browser will display the error message shown in Figure 6-9.

Figure 6-9.  Displaying an error message in the browser



Chapter 6 ■ Disrupting the Request Life Cycle

124

Handling Error Notifications
The final way to disrupt the regular flow of life cycle events is to throw an unhandled exception. When the ASP.NET 
platform receives an exception that has propagated from a handler or a module, it abandons the request, triggers the 
Error event, and jumps to the LogRequest event and completes the request. To demonstrate the effect on request 
handling, I created a class file called EventListModule.cs in the Infrastructure folder and used it to define the 
module shown in Listing 6-14.

Listing 6-14.  The Contents of the EventListModule.cs File

using System;
using System.Reflection;
using System.Web;
 
namespace RequestFlow.Infrastructure {
    public class EventListModule : IHttpModule {
 
        public void Init(HttpApplication app) {
 
            string[] events = { "BeginRequest", "AuthenticateRequest",
                "PostAuthenticateRequest", "AuthorizeRequest", "ResolveRequestCache",
                "PostResolveRequestCache", "MapRequestHandler", "PostMapRequestHandler",
                "AcquireRequestState", "PostAcquireRequestState",
                "PreRequestHandlerExecute", "PostRequestHandlerExecute",
                 "ReleaseRequestState", "PostReleaseRequestState",
                "UpdateRequestCache", "LogRequest", "PostLogRequest",
                "EndRequest", "PreSendRequestHeaders", "PreSendRequestContent"};
 
             MethodInfo methodInfo = GetType().GetMethod("HandleEvent");
            foreach (string name in events) {
                EventInfo evInfo = app.GetType().GetEvent(name);
 
                evInfo.AddEventHandler(app,
                    Delegate.CreateDelegate(evInfo.EventHandlerType,
                        this, methodInfo));
            }
 
            app.Error += (src, args) => {
                System.Diagnostics.Debug.WriteLine("Event: Error");
            };
        }
 
        public void HandleEvent(object src, EventArgs args) {
            string name = HttpContext.Current.CurrentNotification.ToString();
            if (HttpContext.Current.IsPostNotification &&
                !HttpContext.Current.Request
                    .CurrentExecutionFilePathExtension.Equals("css")) {
                name = "Post" + name;
            }



Chapter 6 ■ Disrupting the Request Life Cycle

125

            if (name == "BeginRequest") {
                System.Diagnostics.Debug.WriteLine("---------------");
            }
            System.Diagnostics.Debug.WriteLine("Event: {0}", new string[] { name });
        }
 
        public void Dispose() {
            // do nothing
        }
    }
}
 

This module uses reflection to register a handler for all the life cycle events and writes out the name of the event 
as it is received. The names are written using the System.Diagnostics.Debug.WriteLine method, which is visible in 
the Visual Studio Output window. (Select View ➤ Output if the window isn’t available.) Listing 6-15 shows how  
I registered the new module in the Web.config file and disabled the DeflectModule from the previous section.

Listing 6-15.  Registering and Disabling Modules in the Web.config File

...
<system.webServer>
  <modules>
    <add name="Redirect" type="RequestFlow.Infrastructure.RedirectModule"/>
    <add name="Select" type="RequestFlow.Infrastructure.HandlerSelectionModule"/>
    <add name="Debug" type="RequestFlow.Infrastructure.DebugModule"/>
    <!--<add name="Deflect" type="RequestFlow.Infrastructure.DeflectModule"/>-->
    <add name="EventList" type="RequestFlow.Infrastructure.EventListModule"/>
  </modules>
</system.webServer>
...
 

Note■■  Y ou will notice that there are two handlers in this example: a lambda expression for the Error event and the 
HandleEvent method for all the others. The HandleEvent method uses the HttpContect.CurrentNotificiation 
property to determine which event is being handled, but the value of this property isn’t set correctly for the Error event 
and remains set to whichever event was triggered before the event occurred. To create accurate results, I had to create a 
separate handler for the Error event so that I know for certain when it has been triggered.

In Listing 6-16, I have added an action method to the Home controller that throws an exception. This is a common 
error, where a default value is assigned to an action method parameter to simplify the code. The action method works 
as long as the request includes a value that the model binding process can use for the parameter but fails when the 
request omits a value.



Chapter 6 ■ Disrupting the Request Life Cycle

126

Listing 6-16.  Adding a Broken Action Method to the HomeController.cs File

using System.Web.Mvc;
 
namespace RequestFlow.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            return View();
        }
 
        public ActionResult Authenticate() {
            return RedirectToAction("Index", "Home");
        }
 
        public ActionResult Calc(int val = 0) {
            int result = 100 / val;
            return View("Index");
        }
    }
}
 

I select the Index view as the result of the action method, but the reason that this action method exists is to throw 
an exception that will propagate up through the MVC framework and into the ASP.NET platform. To see the event 
sequence for a regular request, start the application and request the URL /Home/Index. You will see the following in 
the Visual Studio Output window:

Event: BeginRequest
Event: AuthenticateRequest
Event: PostAuthenticateRequest
Event: AuthorizeRequest
Event: ResolveRequestCache
Event: PostResolveRequestCache
Event: MapRequestHandler
Event: PostMapRequestHandler
Event: AcquireRequestState
Event: PostAcquireRequestState
Event: PreExecuteRequestHandler
Event: PostExecuteRequestHandler
Event: ReleaseRequestState
Event: PostReleaseRequestState
Event: UpdateRequestCache
Event: LogRequest
Event: PostLogRequest
Event: EndRequest
Event: SendResponse
Event: SendResponse

Tip■■  T o simplify the output, the module I defined in Listing 6-14 ignores requests for CSS files. 

 



Chapter 6 ■ Disrupting the Request Life Cycle

127

This is the regular sequence of life-cycle events I described in Chapter 3. To see the effect of an uncaught 
exception, request the /Home/Calc URL. The Visual Studio debugger will break to handle the exception. Press F5 to 
resume execution, and you will see the following in the Output window:
 
Event: BeginRequest
Event: AuthenticateRequest
Event: PostAuthenticateRequest
Event: AuthorizeRequest
Event: ResolveRequestCache
Event: PostResolveRequestCache
Event: MapRequestHandler
Event: PostMapRequestHandler
Event: AcquireRequestState
Event: PostAcquireRequestState
Event: PreExecuteRequestHandler
Event: Error
Event: LogRequest
Event: PostLogRequest
Event: EndRequest
Event: SendResponse
Event: SendResponse
 

The important point to note is that the ASP.NET platform jumps to the LogRequest event after triggering the Error 
event, which means that modules that depend on later events won’t receive them and may be left in an undesirable 
state. Modules that need to update the state of the application or release resources when events are triggered should 
handle the Error event so they know that a request has encountered problems and is being terminated.

Tip■■  Y ou can get information about the exception that disrupted the life cycle through the HttpContext.Error property.

Summary
In this chapter, I showed you how to interrupt the normal request life cycle to avoid performing unnecessary work 
and to work around the dangerous parts of brittle applications. I showed you how to perform redirections earlier in 
the request life cycle, how to control the selection and execution of the request handler, how to terminate requests 
so that difficult components are not executed, and how to receive notifications of errors. These are not techniques 
that you will need every day, but knowing what is possible will help you build better applications and can help 
keep old ones up and running. In the next chapter, I describe the ASP.NET platform facilities for identifying and 
adapting to the capabilities of browsers, which can help ensure that your application runs on the widest possible 
range of devices.



129

Chapter 7

Detecting Device Capabilities

Just a few years ago, the world of web clients consisted of browsers running on desktops and browsers running 
on mobile devices. The desktop browsers offered the best support for HTML, CSS, and JavaScript and made their 
requests over fast and reliable network connections. The mobile browsers had limited support for the web standards, 
made requests over slow and unreliable cellular networks, and displayed their content on small screens running on 
underpowered hardware. In those days, it was important for web applications to be able to work out what kind of 
client had made a request because mobile devices could support only the simplest of applications.

The situation is different today. Smartphones and tablets run the same browsers as desktops, have high-resolution 
and high-density displays, and support a range of touch interactions. And functionality has started to migrate from  
the smartphone to the desktop: The latest versions of Windows support touch on the desktop, and more desktop 
monitors are being sold with touch sensors.

The term mobile client is still shorthand for describing a broad classification of devices, but any complex web 
application has to take a more nuanced view of what each client is capable of and respond appropriately.

Web applications can deal with device capabilities in a range of ways. The simplest approach is to ignore the 
differences and let the user figure it out. This isn’t as bad as it sounds because smartphone and tablet browsers have 
become adept at presenting all kinds of content to users and users have become adept at navigating content that isn’t 
optimized for their devices. A better approach is to use responsive design, which relies on features in CSS version 3 to 
adapt content based on the device, a technique that is usually supplemented by JavaScript code that adds support for 
different kinds of interaction when they are supported, such as touch and orientation sensors.

In this chapter, I show a different approach, which is to adapt the application at the server. I show you the 
facilities that the ASP.NET platform provides for classifying requests based on device capabilities and demonstrate 
how you can use these in your MVC framework applications to differentiate your content to create the best user 
experience. Table 7-1 summarizes this chapter.



Chapter 7 ■ Detecting Device Capabilities

130

Preparing the Example Project
I am going to create a new project called Mobile for chapter, following the same approach that I have used for earlier 
examples. I used the Visual Studio ASP.NET Web Application template, selected the Empty option, and added the core 
MVC references. You should be familiar with the process by now, but see Chapter 6 if you want step-by-step instructions. 
I’ll be using Bootstrap again in this chapter, so enter the following command into the Package Manager Console:
 

Install-Package -version 3.0.3 bootstrap

 
Listing 7-1 shows the content of the Programmer.cs file, which I created in the Models folder.

Listing 7-1.  The Contents of the Programmer.cs File

namespace Mobile.Models {
 
    public class Programmer {
 
        public Programmer(string firstName, string lastName, string title,
                string city, string country, string language) {
            FirstName = firstName; LastName = lastName; Title = title;
            City = city; Country = country; Language = language;
        }
        public string FirstName { get; set; }
        public string LastName { get; set; }
        public string Title { get; set; }
        public string City { get; set; }
        public string Country { get; set; }
        public string Language { get; set; }
    }
}
 

Table 7-1.  Chapter Summary

Problem Solution Listing

Determine the capabilities of the 
browser used to make a request.

Read the properties of the HttpBrowserCapabilities object 
accessible through the HttpRequest.Browser property.

1–5

Define custom capabilities data. Define new browser files or create a capabilities provider class. 6–8

Replace the built-in capabilities data. Install data from a third-party provider. 9–11

Alter the content generated by the 
application based on the browser 
capabilities.

Use a Razor conditional statement in the view or select partial 
views through the Html.Partial helper.

12, 14–17

Adapt content to device screen size 
and orientation.

Use responsive design. 13

Automate the selection of partial  
views based on browser capabilities.

Use display modes. 18, 19



Chapter 7 ■ Detecting Device Capabilities

131

This will be the model class for the application, and I’ll be using it to demonstrate how to adapt content to 
different kinds of devices. Listing 7-2 shows the contents of the HomeController.cs file, which I used to define the 
default controller for the project in the Controllers folder.

Listing 7-2.  The Contents of the HomeController.cs File

using System.Web.Mvc;
using Mobile.Models;
 
namespace Mobile.Controllers {
 
    public class HomeController : Controller {
 
        private Programmer[] progs = {
            new Programmer("Alice", "Smith", "Lead Developer", "Paris", "France", "C#"),
            new Programmer("Joe", "Dunston", "Developer", "London", "UK", "Java"),
            new Programmer("Peter", "Jones", "Developer", "Chicago", "USA", "C#"),
            new Programmer("Murray", "Woods", "Jnr Developer", "Boston", "USA", "C#")
        };
 
        public ActionResult Index() {
            return View(progs);
        }
    }
}
 

The controller creates an array of Programmer objects and passes them to the View method. I created a view by 
right-clicking the action method in the code editor and selecting Add View from the pop-up menu. I called the view 
Index.cshtml, selected the Empty (without model) template, and unchecked all of the view option boxes. You can see 
the content I defined in the view in Listing 7-3.

Listing 7-3.  The Contents of the Index.cshtml File

@using Mobile.Models
@model Programmer[]
@{
    Layout = null;
}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Mobile Devices</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
</head>
<body>
    <div class="alert alert-success">
        This is the /Views/Home/Index.cshtml view
    </div>



Chapter 7 ■ Detecting Device Capabilities

132

    <div class="panel panel-primary">
        <div class="panel-heading">Programmers</div>
        <table class="table table-striped">
            <tr>
                <th>First Name</th><th>Last Name</th><th>Title</th>
                <th>City</th><th>Country</th><th>Language</th>
            </tr>
            @foreach (Programmer prog in Model) {
                <tr>
                    <td>@prog.FirstName</td>
                    <td>@prog.LastName</td>
                    <td>@prog.Title</td>
                    <td>@prog.City</td>
                    <td>@prog.Country</td>
                    <td>@prog.Language</td>
                </tr>
            }
        </table>
    </div>
</body>
</html>
 

The layout generates a table display of the Programmer objects, styled using CSS classes. You can see how the view 
is rendered by starting the application, as illustrated by Figure 7-1.

Figure 7-1.  Testing the example application



Chapter 7 ■ Detecting Device Capabilities

133

As the figure shows, I have switched from Internet Explorer to Google Chrome to display the output from the example 
application in this chapter. Recent versions of Chrome have added support for emulating a range of devices, which I’ll be 
using to demonstrate techniques in this chapter. Chrome can be downloaded from http://google.com/chrome.

To enable device simulation, press the F12 key to open the developer tools window, click the Show Drawer button 
(the one with the > character and three horizontal lines), and select the Emulation tab.

Tip■■  I f you don’t see the Emulation tab, then open the Settings window by clicking the cog icon in the developer tools 
window and enable the Show Emulation View in the Console Drawer option.

Select Apple iPhone 5 from the list of devices and click the Emulate button. Figure 7-2 shows the way that the 
output from the application is displayed when Chrome simulates an iPhone 5. Smartphone and tablet browsers are 
pretty good at laying out HTML content automatically. I stacked this example in my favor by using a table because 
they present a difficult layout problem. Scaling the content so that the table is entirely visible makes the content 
unreadable, and reformatting the table so that each row spans multiple lines is often confusing to the user.

Figure 7-2.  Emulating an iPhone 5 using Google Chrome

I have cropped the figure because tall thin screenshots take up a lot of space on the page, but even so, you can see 
that the table doesn’t display well on the narrow iPhone screen. Throughout this chapter, I’ll show you different ways 
that you can adapt the content to the capabilities of the device that it is being displayed on.

http://google.com/chrome


Chapter 7 ■ Detecting Device Capabilities

134

EMULATING AND TESTING MOBILE DEVICES

I have used Google Chrome to emulate mobile devices in this chapter because it is simple and free and gives 
a pretty good idea of how different capabilities affect the way content will be rendered by the target browsers. 
Since Google introduced the emulation features, I find myself using them at the start of projects as I create the 
main building blocks of functionality. Having Chrome installed locally means that the emulator performs well and 
is always available for quick tests without delay. The limitation of this approach is that the Chrome rendering 
engine is always used, which means you can get a sense of how content is affected by screen size, for example, 
but not how different implementations of CSS properties or JavaScript APIs affect an application.

As I get further into the detail of a project, I switch to using a remote browser test suite. I use browserstack.com,  
but there are others available. These test suites allow you to run your application using emulators for popular 
mobile devices. This isn’t perfect, of course, but it starts to give you a sense of where browser implementation 
issues are going to be a problem. (To be clear: I don’t have any relationship with browserstack.com other than 
as a customer. I pay the standard fees and don’t receive any special support or features.) The drawback of using 
a testing service is that the emulators are running remotely and it takes a while to create a session, start the 
emulator, and load the application. This can be a tedious process when you want to make rapid changes, which 
is why I start with Chrome for the major functionality areas and don’t switch to the emulators until I have a solid 
foundation in place.

I start testing with real devices when all of the major functionality is complete. No emulator can re-create the feel 
of interacting with an application through a touch screen, and I spend some time making sure that gestures feel 
natural and that the application gives the user a sense of context about where they are in the application. I adjust 
the fit and finish of the application until I produce something that works well. I don’t have hardware for every 
device, but I keep a small pile of the most popular and representative devices, most of which I purchased used or 
refurbished. Testing with real devices is a laborious process, which is why I wait until the end of the development 
process before using them.

Detecting Device Capabilities
The starting point for adapting to different devices is to access their capabilities. In this section, I show you how  
ASP.NET provides information about different devices and how you can customize and improve this information  
that is available. Table 7-2 puts the process of detecting device capabilities into context.

Table 7-2.  Putting Detecting Device Capabilities in Context

Question Answer

What is it? Device capabilities provide you with information about the browser and device from 
which a request originates.

Why should I care? Not all devices can cope with complex content or implement the latest HTML and CSS 
features. Assessing capabilities allows you to tailor the content and behavior of your 
application to reach the widest possible audience.

How is it used by the  
MVC framework?

The MVC framework implements the display modes feature, which is commonly used 
in conjunction with capabilities data. See the “Using Display Modes” section later in the 
chapter for details.

http://browserstack.com
http://browserstack.com


Chapter 7 ■ Detecting Device Capabilities

135

Getting Browser Capabilities
The ASP.NET platform focuses on the browser, rather than the underlying device, although the two are usually one  
in the same when it comes to smartphones and tablets. The HttpRequest.Browser property returns a  
System.Web.HttpBrowserCapabilities object that describes the capabilities of the device that has made the request.  
The HttpBrowserCapabilities class defines a great many properties, but only a few are truly useful, and I have 
described them in Table 7-3. You can see a complete list of the properties defined by the HttpBrowserCapabilities 
class at http://msdn.microsoft.com/en-us/library/system.web.httpbrowsercapabilities(v=vs.110).aspx. 
Later in the chapter, I’ll explain how you can extend the set of properties using freely available third-party data.

Table 7-3.  The Most Useful Properties Defined by the HttpBrowserCapabilities Class

Name Description

Browser Returns the browser name.

IsMobileDevice Returns true if the device is mobile. There is no fixed definition of what 
constitutes a mobile device, and it is the responsibility of the provider of 
capability data to make the assessment. As a general rule, you can expect this 
property to return true if the device is handheld, is battery powered, and 
connects via a wireless or cellular network.

MobileDeviceManufacturer Returns the name of the device manufacturer.

MobileDeviceModel Returns the name of the device.

ScreenPixelsHeight Returns the size of the screen in pixels.

ScreenPixelsWidth Returns the width of the screen in pixels.

Version Returns the version number of the browser.

Note■■  I  have included two properties defined by the HttpBrowserCapabilities class that look more useful than 
they really are: ScreenPixelsHeight and ScreenPixelsWidth. I listed them because they are so widely used and so 
that I can highlight the problems they cause. The root issue is that the quality of information about screen size is patchy 
and doesn’t always take into account the pixel density of the display. Making decisions about the content sent to a client 
based on the value of these properties can cause a lot of issues, especially for clients that support resizable browser 
windows that don’t correlate directly to the size of the screen (commonly the case for desktop clients). The short version 
is that you should not categorize clients based on the ScreenPixelsHeight and ScreenPixelsWidth properties.

To demonstrate the basic use of the HttpBrowserCapabilities class, I added a new action method to the Home 
controller, as shown in Listing 7-4.

Listing 7-4.  Adding a New Action Method to the HomeController.cs File

using System.Web.Mvc;
using Mobile.Models;
 
namespace Mobile.Controllers {
 
    public class HomeController : Controller {
 

http://msdn.microsoft.com/en-us/library/system.web.httpbrowsercapabilities(v=vs.110).aspx


Chapter 7 ■ Detecting Device Capabilities

136

        private Programmer[] progs = {
            new Programmer("Alice", "Smith", "Lead Developer", "Paris", "France", "C#"),
            new Programmer("Joe", "Dunston", "Developer", "London", "UK", "Java"),
            new Programmer("Peter", "Jones", "Developer", "Chicago", "USA", "C#"),
            new Programmer("Murray", "Woods", "Jnr Developer", "Boston", "USA", "C#")
        };
 
        public ActionResult Index() {
            return View(progs);
        }
 
        public ActionResult Browser() {
            return View();
        }
    }
}
 

The action, called Browser, simply asks the MVC framework to render the default view, which I created by  
right-clicking the action method in the code editor and selecting Add View from the pop-up menu. You can see the 
contents of the view file I created in Listing 7-5.

Listing 7-5.  The Contents of the Browser.cshtml File

@model IEnumerable<Tuple<string, string>>
@{
    Layout = null;
}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Device Capabilities</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
</head>
<body class="container">
    <div class="panel panel-primary">
        <div class="panel-heading">Capabilities</div>
        <table class="table table-striped table-bordered">
            <tr><th>Property</th><th>Value</th></tr>
            <tr><td>Browser</td><td>@Request.Browser.Browser</td></tr>
            <tr><td>IsMobileDevice</td><td>@Request.Browser.IsMobileDevice</td></tr>
            <tr>
                <td>MobileDeviceManufacturer</td>
                <td>@Request.Browser.MobileDeviceManufacturer</td>
            </tr>
            <tr>
                <td>MobileDeviceModel</td>
                <td>@Request.Browser.MobileDeviceModel</td>
            </tr>



Chapter 7 ■ Detecting Device Capabilities

137

            <tr>
                <td>ScreenPixelsHeight</td>
                <td>@Request.Browser.ScreenPixelsHeight</td>
            </tr>
            <tr>
                <td>ScreenPixelsWidth</td>
                <td>@Request.Browser.ScreenPixelsWidth</td>
            </tr>
            <tr><td>Version</td><td>@Request.Browser.Version</td></tr>
        </table>
    </div>
</body>
</html>
 

The view populates a table with rows that contain the property names and values from the 
HttpBrowserCapabilities object. You can see the data generated for the iPhone in Figure 7-3.

Figure 7-3.  The ASP.NET browser capabilities properties for the iPhone

Caution■■  N otice that the values of the ScreenPixelsHeight and ScreenPixelsWidth properties are wrong.  
ASP.NET will default to reporting a screen size of 640 by 480 pixels when there is no information available. This is why 
you should not use these properties to adapt the content you sent to the device: You can’t tell whether the information 
is accurate or just not available.



Chapter 7 ■ Detecting Device Capabilities

138

Improving Capability Data
ASP.NET uses the user-agent string sent as part of the HTTP request to identify a client. As an example, here is the 
user-agent string that Chrome sends when it is emulating an iPhone 5:
 

Mozilla/5.0 (iPhone; CPU iPhone OS 7_0 like Mac OS X; en-us) AppleWebKit/537.51.1 (KHTML, like 
Gecko) Version/7.0 Mobile/11A465 Safari/9537.53

 
You may see a slightly different string because the version number of the browser or the operating system may 

change. To populate the HttpBrowserCapabilities properties, ASP.NET processes the user-agent string using a set of 
browser files, which are contained in the following location:
 

%SystemRoot%\Microsoft.NET\Framework\<version>\CONFIG\Browsers

 
For me, this means that the files are in the C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config\

Browsers folder. I’ll explain the format of these files in the “Creating a Custom Browser File” section later in the 
chapter, but for now it is enough to understand that the browser doesn’t send details of its capabilities to the 
application. Instead, the ASP.NET platform has to be able to translate user-agent strings into meaningful capabilities 
and present them to the application. There is some useful information in a user-agent string, such as the version of the 
browser or operating system being used, but most of the useful information, such as whether a request has originated 
from a mobile device, has to be obtained by the browser files.

Microsoft includes the browser files in the .NET Framework because there has to be some initial reference 
point from which translating between user-agent strings and capabilities can begin. But .NET isn’t updated all that 
often, and the information in the browser files is rudimentary and gets stale quickly given the vibrant market for 
smartphones and tablets. If you rely on just the built-in browser files, then you’ll find that new devices can mislead an 
application because of the way that ASP.NET describes the characteristics of devices that it doesn’t recognize. As an 
example, Figure 7-4 shows the HttpBrowserCapabilities values displayed for a request from a second-generation 
Google Nexus 7 tablet, which sends a user-agent string that the built-in browser files don’t contain information for.

Figure 7-4.  Misleading data for an unrecognized device



Chapter 7 ■ Detecting Device Capabilities

139

There are obviously some problems with this data. The browser has been correctly recognized as Chrome, but the 
manufacturer and model are unknown, the screen size is incorrect, and the IsMobileDevice property returns false, 
even though tablets are generally considered to be mobile. In the sections that follow, I’ll show you different ways to 
improve the accuracy of the ASP.NET capabilities data.

Creating a Custom Browser File
The first technique for improving the ASP.NET capabilities data is to create custom browser files that supplement the 
built-in ones. A browser file describes one or more new browsers. To create a new browser file, right-click the project 
in the Solution Explorer and select Add ➤ Add ASP.NET Folder ➤ App_Browsers from the pop-up menu. This is the 
location that ASP.NET looks in for custom browser files. To create a new file, right-click the App_Browsers folder and 
select Add ➤ Browser File from the pop-up menu. Set the name of the new file to Nexus and click the OK button 
to create the App_Browsers/Nexus.browser file. In Listing 7-6, you can see how I used the browser file to define 
capabilities for the Nexus 7 tablet.

Listing 7-6.  The Contents of the Nexus.browser File

<browsers>
  <browser id="Nexus" parentID="Chrome">
 
    <identification>
      <userAgent match="Nexus" />
    </identification>
 
    <capture>
      <userAgent match="Nexus (?'model'\d+)" />
    </capture>
 
    <capabilities>
      <capability name="MobileDeviceManufacturer" value="Google" />
      <capability name="MobileDeviceModel" value="Nexus ${model}" />
      <capability name="isMobileDevice" value="true" />
    </capabilities>
  </browser>
 
  <browser id="Nexus7" parentID="Nexus">
    <identification>
      <userAgent match="Nexus 7" />
    </identification>
 
    <capabilities>
      <capability name="ScreenPixelsHeight" value="1900" />
      <capability name="ScreenPixelsWidth" value="1200" />
    </capabilities>
  </browser>
 
</browsers>

Tip■■  I  only describe the XML elements that I use in this example, but there is a complete description of the browser 
file schema at http://msdn.microsoft.com/en-us/library/ms228122(v=vs.85).aspx.
 

http://msdn.microsoft.com/en-us/library/ms228122(v=vs.85).aspx


Chapter 7 ■ Detecting Device Capabilities

140

Browser files are XML. The top-level element is browsers, and individual browser definitions are denoted by the 
browser element. New browser definitions can build on existing ones. In the example, I used the id attribute to define 
a new browser called Nexus that builds on the built-in definition for the Chrome browser, which is specified by the 
parentID attribute. (The built-in browser files contain definitions for all the mainstream browsers.)

The identification attribute tells ASP.NET how to determine that a request originates from the browser. I have 
used the most common option, which is to perform a regular expression match on the user-agent string, specified 
with the userAgent element and the match attribute. My browser definition matches any request that contains Nexus. 
You can also identify browsers using headers, but the Nexus products include the information I need in the user-agent 
string, like this:
 

Mozilla/5.0 (Linux; Android 4.3; Nexus 7 Build/JSS15Q) AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/29.0.1547.72 Safari/537.36

 
The capture element allows me to pull out information from the request that I will use to set the value for capability 

properties later. I want to be able to accurately report the model of a Nexus device, so I use the userAgent element to 
match the digits that follow Nexus in the user-agent string and assign them to a temporary variable called model:
 
...
<capture>
    <userAgent match="Nexus (?'model'\d+)" />
</capture>
...
 

The capabilities element contains one or more capability elements that generate values for the 
HttpBrowserCapabilities object. I use literal values to set MobileDeviceManufacturer and isMobileDevice but 
include the model variable from the capture section to set the MobileDeviceModel property, as follows:
 
...
<capabilities>
    <capability name="MobileDeviceManufacturer" value="Google" />
    <capability name="MobileDeviceModel" value="Nexus ${model}" />
    <capability name="isMobileDevice" value="true" />
</capabilities>
...
 

The result is that all requests that have a user-agent string that contains Nexus will report the built-in capabilities 
defined for the Chrome browser, with the exception of the three properties I redefined using capability elements. 
The second browser element further refines the capabilities for the Nexus 7 device. If the user-agent string contains 
Nexus 7, then set the value of the ScreenPixelsHeight and ScreenPixelsWidth properties. Figure 7-5 shows the 
capabilities reported when Google Chrome is used to emulate the Nexus 5 phone and Nexus 7 tablet.



Chapter 7 ■ Detecting Device Capabilities

141

Note■■  I  am using the screen size properties to demonstrate another problem they represent. You can create custom 
browser definitions to override the default values from the built-in files, but it is still hard to provide useful data. In this 
case, the values I have set for the properties are accurate for the second-generation Nexus 7, but the first generation 
used the same user-agent string and has a smaller screen, meaning that inaccurate capabilities will be reported for 
requests that come from the earlier devices.

Creating a Capability Provider
Creating individual browser files works well, but it can quickly get fiddly if you have to maintain a lot of 
capabilities data. A more flexible approach is to create a capability provider, which is a class that is derived from the 
System.Web.Configuration.HttpCapabilitiesProvider class and provides ASP.NET with capability information 
about requests. A custom provider allows you to use C# code to define capabilities, rather than XML elements.

To demonstrate creating a custom capabilities provider, I created a folder called Infrastructure in the example 
project and created a new class file called KindleCapabilities.cs. Listing 7-7 shows how I used the class file to 
define a provider for Amazon Kindle Fire tablets, which I selected because Google Chrome will emulate them and 
because there is no definition for them in the browser files.

Listing 7-7.  The Contents of the KindleCapabilities.cs File

using System.Web;
using System.Web.Configuration;
 
namespace Mobile.Infrastructure {
    public class KindleCapabilities : HttpCapabilitiesProvider {
 
        public override HttpBrowserCapabilities
                GetBrowserCapabilities(HttpRequest request) {
 

Figure 7-5.  The effect of creating a custom browser file



Chapter 7 ■ Detecting Device Capabilities

142

            HttpCapabilitiesDefaultProvider defaults =
                new HttpCapabilitiesDefaultProvider();
            HttpBrowserCapabilities caps = defaults.GetBrowserCapabilities(request);
 
            if (request.UserAgent.Contains("Kindle Fire")) {
                caps.Capabilities["Browser"] = "Silk";
                caps.Capabilities["IsMobileDevice"] = "true";
                caps.Capabilities["MobileDeviceManufacturer"] = "Amazon";
                caps.Capabilities["MobileDeviceModel"] = "Kindle Fire";
                if (request.UserAgent.Contains("Kindle Fire HD")) {
                    caps.Capabilities["MobileDeviceModel"] = "Kindle Fire HD";
                }
            }
            return caps;
        }
    }
}
 

The HttpCapabilitiesProvider class requires subclasses to implement the GetBrowserCapabilities method, 
which receives an HttpRequest object and returns the HttpBrowserCapabilities object that describes the browser. 
There can be only one instance of the HttpCapabilitiesProvider class for an application and so the most common 
approach is to implement the GetBrowserCapabilities method so that it supplements the data produced by 
the HttpCapabilitiesDefaultProvider class, which is the default capabilities provider and is responsible for 
processing the browser files. In the listing, you can see how I get the capabilities of the browser using the default 
provider and add to them only for the Kindle devices. The overall effect is that my capabilities are drawn from a 
combination of the built-in browser files, the custom browser file I created for the Nexus devices, and the code in the 
KindleCapabilities provider class.

The provider must be registered with ASP.NET during application initialization, and in Listing 7-8 you can see 
how I have used the Application_Start method in the global application class to tell ASP.NET that I want to use the 
KindleCapabilities class as the browser capabilities provider. (I described the role that the Application_Start 
method plays in the ASP.NET life cycle in Chapter 3.)

Listing 7-8.  Registering the Capabilities Provider in the Global.asax.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Configuration;
using System.Web.Mvc;
using System.Web.Routing;
using Mobile.Infrastructure;
 
namespace Mobile {
    public class MvcApplication : System.Web.HttpApplication {
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
            HttpCapabilitiesBase.BrowserCapabilitiesProvider = new KindleCapabilities();
 
        }
    }
}
 



Chapter 7 ■ Detecting Device Capabilities

143

The static HttpCapabilitiesBase.BrowserCapabilitiesProvider property sets the capabilities provider for the 
application, and in the listing I have applied an instance of my KindleCapabilities class. Figure 7-6 shows the effect 
of requesting the /Home/Browser URL using Chrome while it is emulating one of the Kindle Fire tablets before and 
after the addition of the custom capabilities provider.

Figure 7-6.  The effect of creating a custom capabilities provider

Table 7-4.  The Types of Web Forms Code Nuggets

Name Description

51degrees.mobi Offers freely available data that can be used in most projects. The free data contains a subset 
of the capability properties in the commercial offering and delays adding new device data for 
three months. See the next section for details of use.

Scientiamobile Freely available data from http://wurfl.sourceforge.net and a commercial offering that 
includes cloud access to data (which has a free option for up to 5,000 requests per month).

Device Atlas Commercial-only offering of on-site data and cloud service.

Using Third-Party Capabilities Data
Using a custom capabilities provider can be more flexible than using XML files, but you still have to provide all of 
the capabilities data for the devices that you want to support. Keeping track of all the devices that are released can 
be a lot of work, which is why you may choose to use a third-party source for the device data. There are three main 
suppliers of capabilities data, and two of them provide no-cost options for using their data. I have listed all three 
companies in Table 7-4.

The 51degrees.mobi data is the most popular because it is easy to integrate into an ASP.NET project and because 
the data is pretty good. The free data is well-maintained and extends the core set of capabilities defined by the built-in 
browser files, but it doesn’t offer the depth of additional capabilities that the paid-for option has, which differentiates 

http://wurfl.sourceforge.net/


Chapter 7 ■ Detecting Device Capabilities

144

between smartphones and tablets, for example. (The other limitation is that new devices are not added to the free 
data for three months, which can present a problem when requests from popular new devices start to arrive before the 
capabilities data has been released.)

Caution■■   You must keep third-party data up-to-date, which generally means downloading a new data file and  
publishing an update of the application. An alternative is to use one of the cloud service offerings, which have the  
benefit of always being current but are outside of your control and require a commercial contract.

Installing the Module and Data File
The 51degrees data is most easily installed through the NuGet package called 51Degrees.mobi, but I don’t use this 
option because the package installs extra features that go beyond device capabilities and get in the way of features 
such as ASP.NET display modes (which I detail later in this chapter). Instead, I prefer to download a .NET assembly 
and the latest data file from http://51degrees.codeplex.com/releases/view/94175.

To add the 51degrees data to the example application, go to the URL just mentioned and download the 
51Degrees.mobi DLL Website Enhancer file. This is a zip file from which you will need to copy the  
FiftyOne.Foundation.dll file from the NET4\bin into the application’s bin folder.

The DLL file contains a module that adds the capabilities data to HttpRequest objects and that is registered using 
the PreApplicationStartMethod attribute, which I described in Chapter 4.

The DLL also contains device data, but it isn’t updated as frequently as the separate data file listed on the same 
CodePlex web page, so download the latest version of the binary data file, rename it to be 51Degrees.mobi.dat, and 
copy it into the App_Data folder.

Tip■■   You will have to use the Windows File Explorer to copy the files. Neither file will show up in the Solution Explorer 
window by default. The bin folder isn’t usually shown, but you can show the data file by right-clicking the App_Data 
folder, selecting Add ➤ Existing Item from the pop-up menu, and locating the 51Degrees.mobi.dat file. The module and 
data file will work even if you don’t perform this step.

Configuring the Module
The next step is to create a configuration file that tells the module to use the separate data file. Right-click the 
Mobile project item in the Solution Explorer and select Add ➤ New Item from the pop-up menu. Select the Web 
Configuration File template item from the Web category, set the name of the file to be 51degrees.mobi.config, and 
click the Add button to create the file. Edit the file that Visual Studio creates to match Listing 7-9.

Listing 7-9.  The Contents of the 51degrees.mobi.config File

<?xml version="1.0"?>
<configuration>
  <configSections>
    <sectionGroup name="fiftyOne">
      <section name="detection"
               type="FiftyOne.Foundation.Mobile.Detection.Configuration.DetectionSection,
                   FiftyOne.Foundation"
               requirePermission="false"
               allowDefinition="Everywhere"

http://51degrees.codeplex.com/releases/view/94175


Chapter 7 ■ Detecting Device Capabilities

145

               restartOnExternalChanges="false"
               allowExeDefinition="MachineToApplication"/>
    </sectionGroup>
  </configSections>
  <fiftyOne>
    <detection binaryFilePath="~/App_Data/51Degrees.mobi.dat"/>
  </fiftyOne>
</configuration>
 

This configuration file specifies the location of the device data file. The 51degrees.mobi developers have extended 
the standard configuration file schema to define their own configuration sections, a technique that I describe in Chapter 9.

Disabling the Custom Capabilities Provider
Setting a custom capabilities provider overrides the 51degrees.mobi data, so I have to comment out the statement in 
the global application class that sets up the KindleCapabilities object from the previous section. Listing 7-10 shows 
the commented-out statement.

Listing 7-10.  Disabling the Custom Capabilities Provider in the Global.asax.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Configuration;
using System.Web.Mvc;
using System.Web.Routing;
using Mobile.Infrastructure;
 
namespace Mobile {
    public class MvcApplication : System.Web.HttpApplication {
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
            // HttpCapabilitiesBase.BrowserCapabilitiesProvider
            //      = new KindleCapabilities();
        }
    }
}

Displaying Additional Properties
The final step is to demonstrate that the third-party capabilities data is being used. The 51degrees.mobi data  
defines a number of additional properties, and in Listing 7-11 you can see how I have extended the markup in the 
Browser.cshtml view to display two of them.



Chapter 7 ■ Detecting Device Capabilities

146

Listing 7-11.  Adding Capability Properties to the Browser.cshtml File

@model IEnumerable<Tuple<string, string>>
@{
    Layout = null;
}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Device Capabilities</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
</head>
<body class="container">
    <div class="panel panel-primary">
        <div class="panel-heading">Capabilities</div>
        <table class="table table-striped table-bordered">
            <tr><th>Property</th><th>Value</th></tr>
            <tr><td>Browser</td><td>@Request.Browser.Browser</td></tr>
            <tr><td>IsMobileDevice</td><td>@Request.Browser.IsMobileDevice</td></tr>
            <tr>
                <td>MobileDeviceManufacturer</td>
                <td>@Request.Browser.MobileDeviceManufacturer</td>
            </tr>
            <tr>
                <td>MobileDeviceModel</td>
                <td>@Request.Browser.MobileDeviceModel</td>
            </tr>
            <tr>
                <td>ScreenPixelsHeight</td>
                <td>@Request.Browser.ScreenPixelsHeight</td>
            </tr>
            <tr>
                <td>ScreenPixelsWidth</td>
                <td>@Request.Browser.ScreenPixelsWidth</td>
            </tr>
            <tr><td>Version</td><td>@Request.Browser.Version</td></tr>
            <tr><td>CssColumn</td><td>@Request.Browser["CssColumn"]</td></tr>
            <tr><td>CssFlexbox</td><td>@Request.Browser["CssFlexbox"]</td></tr>
        </table>
    </div>
</body>
</html>

Tip■■   You can see a complete set of additional properties at http://51degrees.mobi/Products/DeviceData/ 
PropertyDictionary.aspx. Most of the properties listed are available only with the commercial data, but there are  
some useful additions in the free data as well.

 

http://51degrees.mobi/Products/DeviceData/PropertyDictionary.aspx
http://51degrees.mobi/Products/DeviceData/PropertyDictionary.aspx


Chapter 7 ■ Detecting Device Capabilities

147

These two capabilities, CssColumn and CssFlexbox, indicate whether a browser supports two CSS3 layouts. The 
HttpBrowserCapabilities object doesn’t define properties that correspond to these capabilities, but you can get their 
values by treating it as a collection indexed by name, like this:
 
...
<tr><td>CssColumn</td><td>@Request.Browser["CssColumn"]</td></tr>
...
 

Figure 7-7 shows the additional capabilities when Google Chrome is used to emulate an iPhone 5.

Figure 7-7.  Using third-party capabilities data

Tip■■   You may have to refresh the browser tab to change the browser emulation.

Adapting to Capabilities
The first part of this chapter was all about identifying devices and adding capabilities, and with that out of the way,  
I can turn to the different ways in which you can use the capabilities data in an application to adapt to different devices.



Chapter 7 ■ Detecting Device Capabilities

148

Avoiding the Capabilities Trap
I am going to start by showing you the most common mistake with capability data, which is to reduce the amount of 
content sent to mobile devices in order to make difficult layouts fit on the screen. Listing 7-12 shows how I have edited 
the Index.cshtml file to reduce the number of columns in the table of programmers.

Listing 7-12.  Adapting Content for Mobile Devices in the Index.cshtml View

@using Mobile.Models
@model Programmer[]
@{
    Layout = null;
}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Mobile Devices</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
</head>
<body>
    <div class="alert alert-success">
        This is the /Views/Home/Index.cshtml view
    </div>
    <div class="panel panel-primary">
        <div class="panel-heading">Programmers</div>
        <table class="table table-striped">
            <tr>
                <th>First Name</th>
                @if (!Request.Browser.IsMobileDevice) {
                    <th>Last Name</th>
                    <th>Title</th>
                }
                <th>City</th>
                @if (!Request.Browser.IsMobileDevice) {
                    <th>Country</th>
                }
                <th>Language</th>
            </tr>
            @foreach (Programmer prog in Model) {
                <tr>
                    <td>@prog.FirstName</td>
                    @if (!Request.Browser.IsMobileDevice) {
                        <td>@prog.LastName</td>
                        <td>@prog.Title</td>
                    }



Chapter 7 ■ Detecting Device Capabilities

149

                    <td>@prog.City</td>
                    @if (!Request.Browser.IsMobileDevice) {
                        <td>@prog.Country</td>
                    }
                    <td>@prog.Language</td>
                </tr>
            }
        </table>
    </div>
</body>
</html>
 

Razor makes it easy to build logic into views that alters the HTML sent to the browser based on the device 
capabilities, and it is simple and easy to get some effective results. In the listing, I have used the IsMobileDevice 
property to reduce the number of table columns, and you can see the result when the view is rendered for an iPhone 
in Figure 7-8.

Figure 7-8.  Adapting content to support device capabilities

The problem with this approach is that it isn’t adapting to the device capabilities in a useful way. The 
IsMobileDevice property doesn’t convey any information about the device screen size or screen orientation, just that 
the device is likely to run on battery and use cellular networks. Equating mobility with a narrow screen doesn’t make 
sense for today’s smartphones and tablets, not least because they allow the user to view content in two orientations. 
Figure 7-9 shows the same view rendered for the Nexus 7 tablet in landscape screen orientation.



Chapter 7 ■ Detecting Device Capabilities

150

The result is that all mobile devices get the same user experience, even those that are capable of displaying all of 
the content. That’s not to say that the IsMobileDevice property can’t be useful when it used appropriately, but it is 
important to understand that the definition of the property depends on the source of the capabilities data and that it 
can be relied on to make assessments of display size.

Using Responsive Design Instead of Capabilities
The browser knows the size and orientation of the device screen and is far better placed to alter the layout to suit the 
display capabilities of the device through responsive design. Responsive design relies on CSS media queries, which 
change CSS property values based on the current characteristics of the device, including the screen. And, since media 
queries are performed at the browser, they allow content to be adapted dynamically, such as when the user changes the 
orientation of the device. I get into the topic of responsive design in detail in my Pro MVC 5 Client Development book, 
but you don’t have to understand advanced CSS features when you are working with a framework such as Bootstrap 
because it includes convenience CSS classes that take care of the work for you. In Listing 7-13, you can see that I have 
removed the conditional Razor statements from the Index.cshtml view and added a CSS class to th and td elements.

Listing 7-13.  Creating a Responsive Table in the Index.cshtml File

@using Mobile.Models
@model Programmer[]
@{
    Layout = null;
}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Mobile Devices</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
</head>

Figure 7-9.  Content displayed on a tablet



Chapter 7 ■ Detecting Device Capabilities

151

<body>
    <div class="alert alert-success">
        This is the /Views/Home/Index.cshtml view
    </div>
    <div class="panel panel-primary">
        <div class="panel-heading">Programmers</div>
        <table class="table table-striped">
            <tr>
                <th>First Name</th>
                <th class="hidden-xs">Last Name</th>
                <th class="hidden-xs">Title</th>
                <th>City</th>
                <th class="hidden-xs">Country</th>
                <th>Language</th>
            </tr>
            @foreach (Programmer prog in Model) {
                <tr>
                    <td>@prog.FirstName</td>
                    <td class="hidden-xs">@prog.LastName</td>
                    <td class="hidden-xs">@prog.Title</td>
                    <td>@prog.City</td>
                    <td class="hidden-xs">@prog.Country</td>
                    <td>@prog.Language</td>
                </tr>
            }
        </table>
    </div>
</body>
</html>
 

Bootstrap includes a set of responsive CSS classes that show and hide elements based on the width of the screen. 
The hidden-xs class, which I used in the listing, hides an element when the width of the screen is less than 768 pixels. 
The result of the changes I made in Listing 7-13 is that narrow screens show fewer columns but wider screens display 
the full table, as shown in Figure 7-10.

Figure 7-10.  The effect of responsive design



Chapter 7 ■ Detecting Device Capabilities

152

Caution■■  I f you are going to use the IsMobileDevice to offer a variation of the application to all mobile devices, then 
you should also provide a mechanism by which the user can elect to switch back to the full-fat version. This means you 
won’t alienate those users who don’t share your assessment of the capabilities of their device. I usually do this by adding 
a simple switch or button to the HTML layout and keeping track of a user’s choice through the session state data feature 
(which I describe in Chapter 10) or the user data feature (which I describe in Chapter 15.

Tailoring Content to Match Devices
Having shown you the common pitfall with capabilities data, I want to show you that there are useful ways in which 
to adapt your application to support different devices but, importantly, based on the actual capabilities of the device, 
rather than a loose proxy such as the value from the IsMobileDevice property.

Adapting views works best when you focus on the capabilities of specific devices or browsers. HTML and CSS 
provide many opportunities for this kind of adaptation as different generations of browsers implement aspects of the 
standards at different paces.

In effect, capabilities can be used to work around deficiencies of specific devices, especially older devices whose 
built-in browsers don’t support recent HTML and CSS features. I find this especially useful for dealing with older 
versions of Internet Explorer, which are notoriously difficult to support because they were produced during the dark 
days of Microsoft’s embrace-and-extend approach to web standards. Tools such as jQuery and Bootstrap can go a long 
way to helping support old browsers, but complex applications can still encounter problems, and that’s where device 
capabilities can be useful.

I don’t want to get into the process of setting up test rigs for old versions of Internet Explorer, so I am going to 
simulate the problem by identifying a particular browser that Google Chrome can emulate and handling the requests 
it makes differently. For simplicity, I am going to pretend that the Safari browser, which is used on iOS devices such 
as the iPhone, can’t support the table layout in my application and that I need to work around this problem by using 
an alternative approach. I’ll show you different ways of solving the problem, building up to the display modes feature, 
which is the most flexible and easiest to work with in complex applications.

Adapting Directly in the View
The most direct approach is to adapt the content you send to the client directly in the view. You can see how I have 
done this in Listing 7-14 using a Razor conditional statement.

Listing 7-14.  Using Capabilities in the Index.cshtml File

@using Mobile.Models
@model Programmer[]
@{
    Layout = null;
}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Mobile Devices</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />



Chapter 7 ■ Detecting Device Capabilities

153

    <style>
        body { padding-top: 10px; }
    </style>
</head>
<body>
    <div class="alert alert-success">
        This is the /Views/Home/Index.cshtml view
    </div>
    <div class="panel panel-primary">
        <div class="panel-heading">Programmers</div>
        @if (Request.Browser.IsBrowser("Safari")) {
            <div class="panel-body">
                <ul>
                    @foreach (Programmer prog in Model) {
                        <li>
                            @prog.FirstName @prog.LastName,
                            @prog.City (@prog.Language)
                        </li>
                    }
                </ul>
            </div>
        } else {
            <table class="table table-striped">
                <tr>
                    <th>First Name</th>
                    <th class="hidden-xs">Last Name</th>
                    <th class="hidden-xs">Title</th>
                    <th>City</th>
                    <th class="hidden-xs">Country</th>
                    <th>Language</th>
                </tr>
                @foreach (Programmer prog in Model) {
                    <tr>
                        <td>@prog.FirstName</td>
                        <td class="hidden-xs">@prog.LastName</td>
                        <td class="hidden-xs">@prog.Title</td>
                        <td>@prog.City</td>
                        <td class="hidden-xs">@prog.Country</td>
                        <td>@prog.Language</td>
                    </tr>
                }
            </table>
        }
    </div>
</body>
</html>
 

I check to see which browser has made the request using the HttpBrowserCapabilities.IsBrowser convenience 
method, which checks to see whether the browser matches the specified name. This method is useful because it 
respects the hierarchy of browser files, which simplifies the matching process and means you don’t have to remember 
to synchronize your capabilities data with your conditional view statements. When I receive a request from the Safari 
browser, I generate a simple list of programmers rather than the table. You can see the result in Figure 7-11.



Chapter 7 ■ Detecting Device Capabilities

154

Using Partial Views
The problem with putting the conditional statements for browser capabilities into the view is that they quickly 
become unwieldy and difficult to maintain. A more elegant approach is to put the content for different browsers into 
partial views and select the one you need when the view is rendered. Small and simple views are easier to work with, 
and breaking out the browser-specific content makes it easy to keep changes isolated when the application enters 
testing and deployment. For my example application, I need to create two partial views. The first, which will be the 
default, is the /Views/Home/Programmers.cshtml file, the contents of which you can see in Listing 7-15.

Listing 7-15.  The Contents of the Programmers.cshtml File

@using Mobile.Models
@model Programmer[]
 
<table class="table table-striped">
    <tr>
        <th>First Name</th>
        <th class="hidden-xs">Last Name</th>
        <th class="hidden-xs">Title</th>
        <th>City</th>
        <th class="hidden-xs">Country</th>
        <th>Language</th>
    </tr>
    @foreach (Programmer prog in Model) {
        <tr>
            <td>@prog.FirstName</td>
            <td class="hidden-xs">@prog.LastName</td>
            <td class="hidden-xs">@prog.Title</td>
            <td>@prog.City</td>
            <td class="hidden-xs">@prog.Country</td>
            <td>@prog.Language</td>
        </tr>
    }
</table>
 

Figure 7-11.  Responding to device capabilities 



Chapter 7 ■ Detecting Device Capabilities

155

This is the partial view that will be used for all requests that don’t come from the Safari browser, and it contains 
the responsive table layout. I called the second partial view Programmers.Safari.cshtml, and you can see the 
contents in Listing 7-16. (Visual Studio won’t let you create a view called Programmers.Safari.cshtml directly; first 
create a view called Safari.cshtml and then rename it in the Solution Explorer to Programmers.Safari.cshtml.)

Listing 7-16.  The Contents of the Programmers.Safari.cshtml File

@using Mobile.Models
@model Programmer[]
 
<div class="panel-body">
    <ul>
        @foreach (Programmer prog in Model) {
            <li>
                @prog.FirstName @prog.LastName,
                @prog.City (@prog.Language)
            </li>
        }
    </ul>
</div> 

Tip■■  T he naming of the partial views is slightly awkward, but it helps set the scene for the display modes feature, 
which I describe shortly.

This is the view that will be set to the Safari browser, and it contains the simpler list layout that I created in the 
previous section. In Listing 7-17, you can see how I updated the Index.cshtml file to use the new partial views.

Listing 7-17.  Using the Partial Views in the Index.cshtml File

@using Mobile.Models
@model Programmer[]
@{
    Layout = null;
}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Mobile Devices</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
</head>
<body>
    <div class="alert alert-success">
        This is the /Views/Home/Index.cshtml view
    </div>



Chapter 7 ■ Detecting Device Capabilities

156

    <div class="panel panel-primary">
        <div class="panel-heading">Programmers</div>
        @Html.Partial(Request.Browser.IsBrowser("Safari")
            ? "Programmers.Safari" : "Programmers", Model)
    </div>
</body>
</html>
 

I use the Html.Partial helper to select one of the partial views based on the browser capability information.  
The result is a more maintainable approach than having the markup in a single view file.

Using Display Modes
The only problem with the approach in the previous section is that it requires the use of the Html.Partial helper 
method whenever an alternative view is required for the Safari browser. The final technique is the one that I have been 
building up in the previous steps: using display modes.

Display modes are not part of the ASP.NET platform, but I going to demonstrate their use here because they are 
usually applied in conjunction with the device capabilities feature. In short, display modes will automatically select 
alternative views when they exist based on a set of rules defined by the application. As a demonstration, Listing 7-18 
shows how I created a display mode in the global application class.

Listing 7-18.  Defining a Display Mode

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Configuration;
using System.Web.Mvc;
using System.Web.Routing;
using Mobile.Infrastructure;
using System.Web.WebPages;
 
namespace Mobile {
    public class MvcApplication : System.Web.HttpApplication {
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
 
            //HttpCapabilitiesBase.BrowserCapabilitiesProvider
            //     = new KindleCapabilities();
             
            DisplayModeProvider.Instance.Modes.Insert(0,
                new DefaultDisplayMode("Safari") {
                    ContextCondition = (ctx => ctx.Request.Browser.IsBrowser("Safari"))
            });
        }
    }
}
 



Chapter 7 ■ Detecting Device Capabilities

157

The support for display modes is built into the view engine, which is why the important classes are in the 
System.Web.WebPages namespace. The static DisplayModeProvider.Instance.Modes property returns a collection 
of objects that implement the IDisplayMode interface. Rather than work directly with this interface, it is easier to use 
the DefaultDisplayMode class, which takes a constructor argument that will be used to look for views and defines the 
ContextCondition property that is used to match requests.

The ContextCondition property is set using a lambda expression that receives an HttpContext object and 
returns true if the request matches the display mode condition. In the example, my condition is that the IsBrowser 
method matches the Safari browser. I used Safari as the constructor argument as well, and this means that when the 
ContextCondition expression returns true, the display mode will append Safari to the view name specified by the 
action method or HTML helper. For example, when I specify the Programmers view and the request is from the Safari 
browser, the display mode will instead cause the view engine to look for a Programmers.Safari view. If no such view 
exists, then the one originally specified will be used.

The collection of IDisplayMode implementation objects is applied in sequence, which is why I used the Insert 
method to place my display mode at the start of the list. There is a built-in display mode that uses the IsMobileDevice 
property and locates views that contain Mobile in the name, such as Programmers.Mobile.cshtml. You can use this 
view without any configuration, but you should be cautious about the broad range of devices that this display mode 
will be applied to if you use it.

In Listing 7-19, you can see how I removed the ternary statement from the Index.cshtml view so that the display 
mode in Listing 7-17 is responsible for selecting the view automatically.

Listing 7-19.  Updating the Index.cshtml File to Rely on Display Modes

@using Mobile.Models
@model Programmer[]
@{
    Layout = null;
}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Mobile Devices</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
</head>
<body>
    <div class="alert alert-success">
        This is the /Views/Home/Index.cshtml view
    </div>
    <div class="panel panel-primary">
        <div class="panel-heading">Programmers</div>
        @Html.Partial("Programmers", Model)
    </div>
</body>
</html>
 



Chapter 7 ■ Detecting Device Capabilities

158

The Programmers partial view is always specified, and the display mode takes care of looking for the 
Programmers.Safari view when it is required. Display modes make working with device capabilities easy and 
consistent throughout an application, especially since they will fall back to using the default views when the special 
view isn’t available.

Summary
In this chapter I explained the importance of device capabilities in supporting a wide range of browsers and devices. 
I demonstrated how to get capabilities data and how to extend the built-in data with custom browser files, providers, 
and third-party data. I showed you how to adapt an application to the capabilities of a client, directly using Razor and 
indirectly using partial views, HTML helpers, and, ultimately, display modes. In the next chapter, I show you can trace 
requests to get insight into how your application behaves.



159

Chapter 8

Tracing Requests

There will come a point where your web application doesn’t behave the way you expect. Some problems manifest 
themselves in an obvious way—such as unexpected HTML content—and you need to figure out what goes wrong. 
Other problems are more complex and insubstantial, and you may have to dig deep into the application just to figure 
out what’s happening, let alone apply a fix.

The Visual Studio debugger is useful for finding the first kind of problem, which is usually caused by the way that 
single requests are processed. The other kind—the more elusive problem—is often caused by interactions between 
requests, or deep configuration issues that cause problems only periodically. To find and resolve problems that span 
requests, you need to start building up a picture about the way that an application behaves over time. In this chapter, 
I’ll show you different techniques for gaining insight into an application. Table 8-1 summarizes this chapter.

Table 8-1.  Chapter Summary

Problem Solution Listing

Log details of requests. Respond to the LogRequest event. 1–2

Combine logging information with additional details about  
the application and server.

Use the request tracing feature. 3–6

Generate additional information about requests. Install the Glimpse package. 7

Preparing the Example Project
For this chapter I need a simple web application to inspect and monitor, so I am going to continue to use the Mobile 
project I created in Chapter 7 when I demonstrated how to detect and respond to device capabilities. No changes to 
the project are required.

Logging Requests
The simplest way to get insights into an application is to create a log of each request. In this section I explain how the 
ASP.NET request life cycle accommodates logging and show you how to capture logging information. Table 8-2 puts 
logging requests into context.



Chapter 8 ■ Tracing Requests

160

Responding to the Logging Events
The ASP.NET request life cycle includes two events that are specifically related to the logging of requests: LogRequest 
and PostLogRequest. The first event is a signal to any logging functionality you have added to the application that the 
request has been processed and the content is about to be sent to the client. This is the perfect time to log details of 
the request and the way that it has been handled because there will be no further changes to the state of the request 
context objects. The PostLogRequest event is less useful, but it provides a signal that all of the handlers for the 
LogRequest event have been triggered.

Tip■■  T he LogRequest and PostLogRequest events are triggered even when the normal flow of events is interrupted 
by an unhandled exception and the Error event. See Chapter 6 for details of the error event flow.

To demonstrate custom logging, I added a class file called LogModule.cs to the Infrastructure folder and used 
it to define the module shown in Listing 8-1.

Listing 8-1.  The Contents of the LogModule.cs File

using System;
using System.Diagnostics;
using System.IO;
using System.Web;
 
namespace Mobile.Infrastructure {
    public class LogModule : IHttpModule {
        private static int sharedCounter = 0;
        private int requestCounter;
         
        private static object lockObject = new object();
        private Exception requestException = null;
 
        public void Init(HttpApplication app) {
            app.BeginRequest += (src, args) => {
                requestCounter = ++sharedCounter;
            };

Table 8-2.  Putting Request Logging in Context

Question Answer

What is it? Request logging is the process of capturing information about each request 
that ASP.NET receives and processes.

Why should I care? Logging is the first step in understanding how your application behaves 
across multiple requests, which provides important information when 
tracking down complex problems.

How is it used by the MVC framework? The MVC framework does not use the logging features.



Chapter 8 ■ Tracing Requests

161

            app.Error += (src, args) => {
                requestException = HttpContext.Current.Error;
            };
            app.LogRequest += (src, args) => WriteLogMessage(HttpContext.Current);
        }
 
        private void WriteLogMessage(HttpContext ctx) {
            StringWriter sr = new StringWriter();
            sr.WriteLine("--------------");
            sr.WriteLine("Request: {0} for {1}", requestCounter, ctx.Request.RawUrl);
            if (ctx.Handler != null) {
                sr.WriteLine("Handler: {0}", ctx.Handler.GetType());
            }
            sr.WriteLine("Status Code: {0}, Message: {1}", ctx.Response.StatusCode,
                ctx.Response.StatusDescription);
            sr.WriteLine("Elapsed Time: {0} ms",
                DateTime.Now.Subtract(ctx.Timestamp).Milliseconds);
            if (requestException != null) {
                sr.WriteLine("Error: {0}", requestException.GetType());
            }
            lock (lockObject) {
                Debug.Write(sr.ToString());
            }
        }
 
        public void Dispose() {
            // do nothing
        }
    }
}
 

This module provides brief summaries of the requests that are received by the application to the Visual Studio 
Output window. This is the kind of logging that I find useful when I suspect there are inadvertent interactions between 
requests (through poorly protected shared data, a topic I describe in Chapter 10) or when I think that some requests 
for the same URL are taking too long to complete (which is usually caused by queuing for access to a shared resource 
somewhere in the application—often an external resource such as a database).

The request summary contains information about the order in which the request was received, the amount of 
time it took to process, the name of the handler class used to generate the content, the status code and message that 
will be sent to the client, and whether an unhandled exception was encountered.

There is nothing especially complex about this module, but there are two aspects of this kind of logging that 
require caution. First, it is important to remember that ASP.NET can process multiple concurrent requests, which 
means that synchronization is required to protect access to shared resources. In the example, I use the lock keyword 
to ensure that only one instance of my module will call the System.Diagnostics.Debug.Write method. Without this, 
requests that overlapped would cause the output from the module to be interleaved and rendered unreadable.

Second, any logging will slow down the application, especially when synchronization is required. There is always 
an overhead associated with logging because there are additional classes to create and C# statements to execute, 
but once synchronization is required, the problem can become more profound and choke points can form in the 
application where multiple requests have to queue up to gain exclusive access to a resource (such as the Debug.Write 
method in the example).



Chapter 8 ■ Tracing Requests

162

These aspects of logging rarely cause serious issues during the development phase of a web application because 
only the developer is making requests and there are not enough of them to highlight throughput problems—but 
in load testing and production environments, logging code can cause serious problems. Always minimize the 
amount of synchronization required and remember to disable unnecessary modules before you test and deploy the 
application. If the problem you are looking for is caused by an interaction between requests, the additional work and 
synchronization associated with logging can slow down and re-sequence request processing just enough to hide the 
problem, creating the dreaded “cannot reproduce” bug summary.

Returning to my example module, Listing 8-2 shows the additions I made to the Web.config file to register it  
with ASP.NET.

Listing 8-2.  Registering the Module in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <system.webServer>
    <modules>
      <add name="Log" type="Mobile.Infrastructure.LogModule"/>
    </modules>
  </system.webServer>
</configuration>
 

Simply start the application to test the logging module. The Visual Studio Output window will show  
messages similar to the following, although the exact output will depend on files your browser has cached from 
previous requests:
 
--------------
Request: 1 for /
Handler: System.Web.Mvc.MvcHandler
Status Code: 200, Message: OK
Elapsed Time: 2 ms
--------------
Request: 2 for /Content/bootstrap.min.css
Status Code: 200, Message: OK
Elapsed Time: 3 ms
--------------
Request: 3 for /Content/bootstrap-theme.min.css
Status Code: 200, Message: OK
Elapsed Time: 2 ms



Chapter 8 ■ Tracing Requests

163

Tracing Requests
ASP.NET includes a little used but incredibly helpful request tracing feature that provides information about the 
requests that an application receives. The tracing feature pre-dates the MVC framework, and there are some features 
that don’t work outside of Web Forms applications, but there is still enough value in performing tracing that it should 
be a key part of your diagnostic toolkit. In the sections that follow, I’ll show you how to enable, use, and customize the 
tracing process. Table 8-3 puts tracing requests into context.

Table 8-3.  Putting Request Tracing in Context

Question Answer

What is it? Request tracing allows you to combine custom logging with the automatic 
capture of information about ASP.NET and the state of the application.

Why should I care? Tracing means you can simplify your logging code and rely on ASP.NET to 
capture detailed information about requests.

How is it used by the MVC framework? The MVC framework does not use the tracing features.

Enabling Request Tracing 
Tracing is configured through the Web.config file, and in Listing 8-3 you can see the additions I made to set up 
request tracing.

Listing 8-3.  Enabling Request Tracing in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
    <trace enabled="true" requestLimit="50" />
  </system.web>
  <system.webServer>
    <modules>
      <add name="Log" type="Mobile.Infrastructure.LogModule"/>
    </modules>
  </system.webServer>
</configuration>
 

The trace element is defined in the system.web section and controls the tracing feature. There are several 
attributes that can be used to fine-tune the way that tracing is performed, as described in Table 8-4. The configuration 
I have defined in the listing is a good starting point for most projects.



Chapter 8 ■ Tracing Requests

164

Tip■■  T he trace element defines additional attributes beyond the ones I described in the table, but they either work 
only with Web Forms applications or are not especially useful in an MVC framework application.

View Request Traces
The request trace information is available through the special /trace.axd URL. To see the way that tracing works, 
start the application, request the /Home/Browser and /Home/Index URLs (the only two supported by the example 
application), and then request /trace.axd. You will see a summary of the requests received by the application, as 
shown by Figure 8-1.

Table 8-4.  The Attributes Defined by the trace Element

Name Description

enabled When set to true, the request tracing feature is enabled.

localOnly When set to true, the trace viewer (which I describe in the next section) is accessible 
only when requested from the local machine. IIS Express, which is used to run ASP.ET 
applications during development, accepts only local requests by default, so enabling this 
option has no effect until the application is deployed.

mostRecent Trace information is discarded when the number of requests received by the application 
exceeds the value of the requestLimit attribute. Setting this attribute to true discards the 
oldest requests, while false (the default value) discards newer requests.

requestLimit Specifies the number of request traces that will be stored for viewing. The default value is 10.

writeToDiagnosticsTrace When set to true, trace messages are written to the System.Diagnostics.Trace class. See 
the “Adding Custom Trace Messages” and the “Using Adding Trace Messages to Glimpse” 
sections for details.

Figure 8-1.  The summary of request traces



Chapter 8 ■ Tracing Requests

165

The list of requests that you see will, naturally, depend on which URLs you requested and which files your 
browser has cached. The summary shows the sequence in which requests have arrived, the URL that they requested 
(which is in the File column, a remnant from Web Forms), the request HTTP method, and the status code that was 
sent back to the client.

Tip■■  N otice that some of the requests shown in the trace summary are for favicon.ico, which is the browser’s  
attempt to obtain a favorite icon for the application. Wikipedia has a good summary of favorite icons and their use: 
http://en.wikipedia.org/wiki/Favicon.

You can inspect individual requests by clicking one of the View Details links. This displays the detailed trace data, 
as shown in Figure 8-2.

Figure 8-2.  Detailed trace data

http://en.wikipedia.org/wiki/Favicon


Chapter 8 ■ Tracing Requests

166

I have shown only part of the trace detail because there is so much information, covering every aspect of the 
request. Some sections, such as Session State and Application State, will be empty because they relate to features that 
I don’t describe until Part 3. But even so, you can see a complete set of the request headers, cookies, and details of 
form and query string data. There are some holdovers from Web Forms, such as the Control Tree section, that has no 
bearing on an MVC framework, but most of the data is pertinent and can be helpful in understanding how multiple 
requests relate to one another.

Adding Custom Trace Messages 
The default trace data can be useful, but it is generic to all applications and may not give you the insights that you are 
looking for. Fortunately, you can tailor the trace data by adding custom trace messages to your application, which is 
done through the HttpContext.Trace property, which returns a TraceContext object. The TraceContext class defines 
the methods shown in Table 8-5.

Table 8-5.  The Methods Defined by the TraceContext Class

Name Description

Warn(message, category) Writes the specified message as a warning (which is shown in 
red in the Trace Information section of the trace detail)

Write(message, category) Writes the specified message to the Trace Information section

The messages written using the Write and Warn methods are collected as part of the trace and displayed in 
the Trace Information section of the detailed request trace data. In Listing 8-4, you can see how I have used the 
TraceContext methods to simplify the LogModule class that I created in the previous section.

Listing 8-4.  Using Request Tracing in the LogModule.cs File

using System.Web;
 
namespace Mobile.Infrastructure {
    public class LogModule : IHttpModule {
        private const string traceCategory = "LogModule";
 
        public void Init(HttpApplication app) {
            app.BeginRequest += (src, args) => {
                HttpContext.Current.Trace.Write(traceCategory, "BeginRequest");
            };
 
            app.EndRequest += (src, args) => {
                HttpContext.Current.Trace.Write(traceCategory, "EndRequest");
            };
 
            app.PostMapRequestHandler += (src, args) => {
                HttpContext.Current.Trace.Write(traceCategory,
                    string.Format("Handler: {0}",
                        HttpContext.Current.Handler));
            };
 



Chapter 8 ■ Tracing Requests

167

            app.Error += (src, args) => {
                HttpContext.Current.Trace.Warn(traceCategory, string.Format("Error: {0}",
                    HttpContext.Current.Error.GetType().Name));
            };
        }
 
        public void Dispose() {
            // do nothing
        }
    }
}
 

My module has become simpler because I don’t have to worry about working out relative timings or 
synchronizing access to shared data and resources—these tasks become the responsibility of the request tracing 
system. And, of course, generating trace messages isn’t just for modules; you can instrument any part of the 
application, including the controllers and views. In Listing 8-5, you can see how I have added tracing to the Home 
controller.

Listing 8-5.  Adding Tracing in the HomeController.cs File

using System.Web.Mvc;
using Mobile.Models;
 
namespace Mobile.Controllers {
 
    public class HomeController : Controller {
 
        private Programmer[] progs = {
            new Programmer("Alice", "Smith", "Lead Developer", "Paris", "France", "C#"),
            new Programmer("Joe", "Dunston", "Developer", "London", "UK", "Java"),
            new Programmer("Peter", "Jones", "Developer", "Chicago", "USA", "C#"),
            new Programmer("Murray", "Woods", "Jnr Developer", "Boston", "USA", "C#")
        };
 
        public ActionResult Index() {
            HttpContext.Trace.Write("HomeController", "Index Method Started");
            HttpContext.Trace.Write("HomeController",
                string.Format("There are {0} programmers", progs.Length));
            ActionResult result = View(progs);
            HttpContext.Trace.Write("HomeController", "Index Method Completed");
            return result;
        }
 
        public ActionResult Browser() {
            return View();
        }
    }
}
 



Chapter 8 ■ Tracing Requests

168

My example application isn’t complex enough to need any real tracing, so I have added messages to report when 
the Index action method is invoked, the number of data items, and when the method has completed and only needs 
to return the result. (I have assigned the ActionResult returned from calling the View menu to a local variable so that 
I can insert a trace method between creating the result and returning it.)

It is also possible to add trace statements to views, although they make the views harder to read. As a 
consequence, I tend to limit my use of trace statements in views to just those I need to track down a complex layout 
problem (sadly, these are usually problems of the “duh” variety where I have mistyped a partial view name but 
can’t see the error despite looking at the problem for quite a while). In Listing 8-6, you can see how I added a trace 
statement that reports on each data item as it is rendered.

Tip■■  I  have added the trace statement to the Programmers.cshtml partial view but not Programmer.Safari.cshtml. 
If you still have your browser configured to emulate the iPhone from the previous chapter, now is the time to return to 
using Internet Explorer or to disable Chrome device emulation.

Listing 8-6.  Adding Trace Statements to the Programmers.cshtml File

@using Mobile.Models
@model Programmer[]
 
<table class="table table-striped">
    <tr>
        <th>First Name</th>
        <th class="hidden-xs">Last Name</th>
        <th class="hidden-xs">Title</th>
        <th>City</th>
        <th class="hidden-xs">Country</th>
        <th>Language</th>
    </tr>
    @foreach (Programmer prog in Model) {
        Context.Trace.Write("Programmers View",
              string.Format("Processing {0} {1}",
                prog.FirstName, prog.LastName));
        <tr>
            <td>@prog.FirstName</td>
            <td class="hidden-xs">@prog.LastName</td>
            <td class="hidden-xs">@prog.Title</td>
            <td>@prog.City</td>
            <td class="hidden-xs">@prog.Country</td>
            <td>@prog.Language</td>
        </tr>
    }
</table>
 

I don’t like putting C# statements in view files, which is another reason why I use trace statements sparingly  
in views.



Chapter 8 ■ Tracing Requests

169

Tip■■  I  didn’t need to prefix the call to the Context.Trace.Write method with an @ character in the listing because 
the statement appears inside the foreach block.

To see the custom trace messages, start the application, request the /Home/Index URL, and then request /trace.
axd. Select the request for /Home/Index, and you will see the trace messages in the Trace Information section of the 
output, as shown in Figure 8-3.

Figure 8-3.  Adding custom trace messages

The category information shows the flow of the request through the ASP.NET platform and the MVC framework, 
and individual messages provide detailed insights. The two columns of numbers provide timing information, which is 
always helpful in finding performance bottlenecks. The From First column shows the elapsed time since the first trace 
message, and the From Last column shows the elapsed time since the previous trace message. All times are expressed 
in seconds, and using the data in the figure, I can see that the elapsed time from the BeginRequest to the EndRequest 
method was 0.19 seconds and that most of that time passed from the point at which the action method returned its 
result, and I can see when the view rendering began.

Tip■■  T he timing information in the figure was for the first request after I started the application. There is a lot of 
startup preparation that is performed only when the first request is received, including preparing the routing system, 
generating a list of its controller classes, and compiling the view files into C# classes. This work isn’t done for subsequent 
requests, which is why the elapsed time for the second request to the same URL took only 0.004 seconds on my  
development PC.



Chapter 8 ■ Tracing Requests

170

Using Glimpse
I use the custom tracing and logging approaches when I need to find a specific problem, but I use a tool called 
Glimpse when I don’t know where to start looking or when I need to look at the overall behavior of the application. 
Glimpse is an open source diagnostics package that builds on the ASP.NET logging and tracing features and adds a lot 
of useful insight into how requests are handled within an application. In the sections that follow, I’ll show you how to 
install and use Glimpse and explain why I find it so useful. Table 8-6 puts Glimpse into context.

Table 8-6.  Putting Glimpse in Context

Question Answer

What is it? Glimpse is an open source diagnostic tool that captures detailed information about requests.

Why should I care? Glimpse provides a level of detail that is beyond what the built-in tracing feature  
provides and is extensible to other software components and other parts of the ASP.NET 
technology stack.

How is it used by the 
MVC framework?

The MVC framework does not rely on Glimpse, which is a third-party tool unrelated  
to Microsoft.

Installing Glimpse
The simplest way to install Glimpse is using NuGet. Enter the following command into the Visual Studio Package 
Manager Console:
 

Install-Package Glimpse.MVC5

 
When you hit Enter, NuGet will download and install the Glimpse packages that support MVC framework 

applications. The package I have installed is for MVC5, but there are also packages for earlier MVC releases.
Once the installation is complete, start the application and navigate to the /Glimpse.axd URL. You will see the 

Glimpse configuration page, as shown in Figure 8-4.



Chapter 8 ■ Tracing Requests

171

Figure 8-4.  Configuring Glimpse

Tip■■  G limpse has a large catalog of extensions and packages that can be used to extend monitoring to other software 
components, including Entity Framework, and other parts of the ASP.NET technology stack, such as SignalR.  
See http://getglimpse.com for details.

Click the Turn Glimpse On button to enable Glimpse diagnostics. The /glimpse.axd page is also used to 
configure Glimpse, but the default configuration is suitable for most projects, and I don’t need to make any 
configuration changes for this chapter.

Using Glimpse
Using Glimpse is as simple as requesting a URL from your application. Glimpse inserts a toolbar at the bottom of the 
screen that summarizes how the request has been handled, as shown in Figure 8-5.

http://getglimpse.com/


Chapter 8 ■ Tracing Requests

172

It can be hard to make out the details of the toolbar from Figure 8-5, so I have increased the scale and broken the 
bar into sections in Figure 8-6 so you can see the details.

Figure 8-5.  The Glimpse toolbar 

Figure 8-6.  A closer look at the Glimpse toolbar

The summary is broken down into three sections. The HTTP section reports on the total amount of time elapsed 
from the moment that the request was started until the moment when the response was rendered and displayed to 
the user. The HOST section provides information about how long the action targeted by the request took to execute and 
how much time it took for the view be rendered. The final section, AJAX, summarizes the Ajax requests made by the 
content received from the server.

You can get more detailed information by moving the mouse over a section. Figure 8-7 shows the details of the 
HOST section, which is the one that you will most often be interested in when working with the ASP.NET platform.



Chapter 8 ■ Tracing Requests

173

Glimpse provides a lot more detail about requests when you click the G icon at the right edge of the toolbar. This 
opens a tabbed window that details every aspect of the request and how it was handled by the applications. There are 
tabs that detail the request, the configuration and environment of the server, state data (which I describe in Chapter 10),  
the routes that matched the request and much more. One of the most useful tabs is called Timeline, and it provides 
performance information about the way that the request was processed, as illustrated by Figure 8-8.

Figure 8-7.  A more detailed view of the HOST section

Figure 8-8.  The Glimpse Timeline tab

The Timeline tab shows the amount of time the request spent in the ASP.NET platform and the amount of time 
the MVC framework spent executing controllers, filters, and views. There is also an end-to-end view that shows the 
flow of the request through the different components of the application, which can help identify those actions or 
views that are taking too long to complete. I am only touching on the surface of the information provided by Glimpse, 
but you can see that there is a lot of detail available, and I recommend that you take the time to explore it fully.



Chapter 8 ■ Tracing Requests

174

Adding Trace Messages to Glimpse 
One of the tabs in the Glimpse detail view is Trace, but it doesn’t capture the messages written through the 
HttpContext.Trace object unless you set writeToDiagnosticsTrace to true on the trace element in the Web.config 
file, as shown in Listing 8-7.

Listing 8-7.  Forwarding Trace Messages So They Can Be Read by Glimpse

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <configSections>
    <section name="glimpse" type="Glimpse.Core.Configuration.Section, Glimpse.Core" />
  </configSections>
   
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
    <trace enabled="true" requestLimit="50" writeToDiagnosticsTrace="true"/>
    <httpModules>
      <add name="Glimpse" type="Glimpse.AspNet.HttpModule, Glimpse.AspNet" />
    </httpModules>
    <httpHandlers>
      <add path="glimpse.axd" verb="GET" type="Glimpse.AspNet.HttpHandler,
           Glimpse.AspNet" />
    </httpHandlers>
  </system.web>
 
  <system.webServer>
    <modules>
      <add name="Log" type="Mobile.Infrastructure.LogModule" />
      <add name="Glimpse" type="Glimpse.AspNet.HttpModule, Glimpse.AspNet"
          preCondition="integratedMode" />
    </modules>
    <validation validateIntegratedModeConfiguration="false" />
    <handlers>
      <add name="Glimpse" path="glimpse.axd" verb="GET"
       type="Glimpse.AspNet.HttpHandler, Glimpse.AspNet" preCondition="integratedMode" />
    </handlers>
  </system.webServer>
 
  <glimpse defaultRuntimePolicy="On" endpointBaseUri="~/Glimpse.axd"></glimpse>
</configuration>
 

The additions to the Web.config file were added when Glimpse was installed. If you restart the application,  
open the Glimpse tabbed window, and move to the Trace tab, you will see the trace messages from the module, as 
shown in Figure 8-9.



Chapter 8 ■ Tracing Requests

175

Figure 8-9.  Trace information displayed by Glimpse

Summary
In this chapter I showed you the facilities that ASP.NET provides for logging and tracing requests. I showed you how 
to handle the LogRequest method in the request life cycle and explained the use of the TraceContext class, instances 
of which are available through the HttpContext.Trace property. I demonstrated the built-in ASP.NET support for 
viewing trace information and finished the chapter by introducing Glimpse, which is an excellent open source 
diagnostics tool. In Part 3, I show you how ASP.NET builds on the foundation of handling features that described in 
this part of the book to provide useful services to web application developers.



Part 3

The ASP.NET Platform Services



179

Chapter 9

Configuration

The first service that the ASP.NET platform provides to applications is configuration. This may not seem like the 
most exciting topic, but the configuration feature is rich and flexible and helps avoid one of the pitfalls of complex 
software development: hard-coding behaviors into software components. As you will learn, the ASP.NET support for 
configuration can be adapted to suit all kinds of web applications and is worth taking the time to understand. Table 9-1 
summarizes this chapter.

Table 9-1.  Chapter Summary

Problem Solution Listing

Define simple configuration values. Use application settings. 1–3

Read application settings. Use the WebConfigurationManager.AppSettings property. 4–6

Define settings for connecting to  
remote services, such as databases.

Use connection strings. 7

Read connection strings. Use the WebConfigurationManager.ConnectionStrings 
property.

8

Group related settings. Define a configuration section. 9–12

Read configuration sections. Use the GetWebApplicationSection method defined  
by the WebConfigurationManager class.

13, 19

Group a collection of similar  
settings together.

Define a collection configuration section. 14–18

Group sections together. Define a collection section group. 20–21

Read section groups. Use the OpenWebConfiguration method defined by the 
WebConfigurationManager class.

22

Override configuration settings. Use the location element or create a folder-level  
configuration file.

23–27

Read the ASP.NET settings. Use the handler classes in the System.Configuration 
namespace.

28



Chapter 9 ■ Configuration

180

Preparing the Example Project
For this chapter I created a new project called ConfigFiles, following the same approach I used for earlier example 
applications. I used the Visual Studio ASP.NET Web Application template, selected the Empty option, and added the 
core MVC references. I’ll be using Bootstrap again in this chapter, so enter the following command into the Package 
Manager Console:
 

Install-Package -version 3.0.3 bootstrap

 
I added a Home controller to the Controllers folder, the definition of which you can see in Listing 9-1. Throughout 

this chapter, I’ll be displaying lists of configuration properties and their values, so the data that the Index action passes 
to the View method is a dictionary. So that I can test the application, I have defined some placeholder data in the 
controller.

Listing 9-1.  The Contents of the HomeController.cs File

using System.Collections.Generic;
using System.Web.Mvc;
 
namespace ConfigFiles.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            configData.Add("Placeholder Property", "Placeholder Value");
            return View(configData);
        }
    }
}
 

I created a view by right-clicking the Index action method in the code editor and selecting Add View from the 
pop-up menu. I called the view Index.cshtml, selected the Empty (without model) template, and unchecked all of the 
view option boxes. You can see the content I defined in the view in Listing 9-2.

Listing 9-2.  The Contents of the Index.cshtml File

@model Dictionary<string, string>
@{ Layout = null; }
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style> body { padding-top: 10px; } </style>
    <title>Configuration</title>
</head>
<body class="container">
    <div class="panel panel-primary">
        <div class="panel-heading">Configuration Data</div>
        <table class="table table-striped">



Chapter 9 ■ Configuration

181

            <thead>
                <tr><th>Property</th><th>Value</th></tr>
            </thead>
            <tbody>
                @foreach (string key in Model.Keys) {
                    <tr><td>@key</td><td>@Model[key]</td></tr>
                }
            </tbody>
        </table>
    </div>
</body>
</html>
 

Start the application and navigate to the root URL or /Home/Index to see how the view is rendered, as shown  
in Figure 9-1.

Figure 9-1.  Testing the example application

ASP.NET Configuration
Aside from a few standard additions to configure a database or enable debugging, most MVC framework developers 
don’t give any thought to the Web.config file, which is a shame because it provides a useful set of features that 
configure ASP.NET and that can be consumed within application code. In the sections that follow, I describe how the 
Web.config file forms part of a larger configuration system and explain how you can use this system to control the 
behavior of your applications. Table 9-2 puts the ASP.NET configuration system into context.

Table 9-2.  Putting the ASP.NET Configuration System in Context

Question Answer

What is it? It’s a flexible set of classes and files that control the behavior of the ASP.NET foundation and 
services, the MVC framework, and your web application code.

Why should I care? Using the built-in configuration support is much easier than writing your own settings code, 
and there are some excellent features that ease application development.

How is it used by the 
MVC framework?

The MVC framework uses the configuration system extensively. The most visible use to the 
programmer is the web.config file in the Views folder, which is used to configure the Razor 
view engine.



Chapter 9 ■ Configuration

182

Understanding the Configuration Hierarchy
Most MVC framework developers only need to edit the Web.config file in the top-level of the Visual Studio project, 
but this is just one of a hierarchy of configuration files that ASP.NET uses. When an application is started, ASP.NET 
starts at the top of the hierarchy and works its way down. Each level in the hierarchy has a slightly narrower scope, and 
the overall effect is to allow lower-level configuration files to override more general settings that have been previously 
defined. The application-level Web.config file—the one in the root folder of Visual Studio—is close to the bottom of 
the hierarchy and relies on dozens of settings that have been defined in higher-level files. Table 9-3 summarizes the 
configuration files and explains how they relate to one another.

Table 9-3.  The Hierarchy of Configuration Files

Scope Name Description

Global Machine.config This is the top-level file in the hierarchy. Changes to this file affect every 
ASP.NET application running on the server. See the following text for the 
location of this file.

Global ApplicationHost.config This file defines the configuration sections and default values for IIS or 
IIS Express. It is at the second level of the hierarchy and is used to define 
settings specific to the app server. See the following text for the location of 
this file.

Global Web.config This is the global version of the Web.config file and is located in the same 
directory as the Machine.config file. It provides the server-wide default 
values for ASP.NET and is at the second level of the hierarchy. Changes to 
this file override the settings in Machine.config.

Site Web.config An ASP.NET site is an IIS folder hierarchy that can contain multiple 
applications. The Web.config file in the site’s root folder sets the default 
configuration for all the applications in that site. This file is at level 3 in the 
hierarchy and is used to override settings in the global Web.config file.

App Web.config This is the application-level Web.config file found in the root folder of the 
application and is the one that developers most often use for configuration. 
It overrides the values specified in the site-level Web.config.

Folder location elements A location element in the app-level Web.config file specifies 
configuration settings for a URL specified by the path attribute. See the 
“Overriding Configuration Settings” section for details.

Folder Web.config This is a Web.config file added to a folder within the application and  
has the same effect as a location attribute in the app-level Web.config  
file. The MVC framework uses a web.config file in the Views folder to  
configure the view engine. See the “Overriding Configuration Settings” 
section for details.

Tip■■  T he MVC framework includes a file called web.config (with a lowercase w) in the Views folder. The file names 
are not case sensitive, and this is an example of a folder-level Web.config file as described in the table.



Chapter 9 ■ Configuration

183

ASP.NET starts with the Machine.config file, which is at the top of the hierarchy to get the starting point for the 
configuration and then moves to the second-level of the hierarchy and processes the ApplicationHost.config and 
global Web.config files. New settings are added to form a merged configuration, and values for existing settings are 
replaced. This process continues down the hierarchy until the app-level Web.config file is reached, and elements are 
used to expand the merged configuration or replace existing configuration values. Finally, the location elements and 
the folder-level Web.config files are processed to create specific configurations for parts of the application. Figure 9-2 
shows the hierarchy of files as they are processed.

Machine

ApplicationHost

Web
(Global)

Web
(Global)

Web
(Site)

Web
(App)

Web
(Folder)

Location elements

Figure 9-2.  The hierarchy of ASP.NET configuration files

Tip■■  I  have included the site-level Web.config file for completeness, but it is specific to IIS. IIS is still widely used, 
but there is a substantial shift toward cloud deployment and the use of other servers using the OWIN API. I recommend 
that you don’t use IIS sites and that you install each application in isolation because it makes it easier to move between 
deployment models. Instead, use application-level Web.config files.

Although the configuration is spread throughout multiple files, the overall effect is a consistent configuration 
where settings are defined for every application at the global level and then progressively refined in the site, 
application, and folder-level files. This is why something as complex as an MVC framework application needs only a 
few lines of settings in the Web.config file: Hundreds of other settings are defined further up the hierarchy.

Tip■■  I f any of the files are missing, ASP.NET skips to the next level in the hierarchy. But, as you’ll learn, the global files 
define the structure that later files use to define configuration settings as well as their default values.

One of the reasons that developers work with the application-level Web.config file is that the files higher up 
in the hierarchy cannot be edited, something that is almost always the case for hosting and cloud platforms and 
frequently true for IIS servers running in private data centers as well.

Caution■■  T he ASP.NET platform caches the configuration data after it processes the hierarchy of files to improve  
performance. However, the configuration files are monitored, and any changes cause the application to be restarted, 
which can cause any state data to be lost and interrupt service to users. For this reason, it is important you don’t modify 
the configuration files for a production system while the application is running.



Chapter 9 ■ Configuration

184

During development you will sometimes need to change the global configuration files to re-create the 
settings that you will encounter in production. You can find the Machine.config and global Web.config files in the 
following folder:
 

C:\Windows\Microsoft.NET\Framework\v4.0.30319\Config

 
You may have a slightly different path if you are using a later version of .NET or have installed Windows into 

a nonstandard location. You can find the ApplicationHost.config file used by IIS Express in the following folder, 
where <user> is replaced by the name of the current user:
 

C:\Users\<user>\Documents\IISExpress\config

Working with Basic Configuration Data
The configuration file system allows you to define settings for your application in different ways ranging from simple 
and generic key-value pairs to complex custom settings that are completely tailored to the needs of one application. 
In this section, I’ll show you how to define different kinds of basic setting and explain how you access them 
programmatically. After all, there is no point in being able to define a configuration if you can’t read it at runtime. 
Table 9-4 puts basic configuration data into context.

Table 9-4.  Putting the Basic ASP.NET Configuration Data in Context

Question Answer

What is it? The basic configuration data consists of application settings and connection strings. 
Application settings are a set of key-value pairs, and connection strings contain 
information required to establish connections to external systems, such as databases.

Why should I care? Application settings are the simplest way to define custom configuration information for 
an application. Connection strings are the standard mechanism for defining database 
connections and are widely used with ASP.NET.

How is it used by the 
MVC framework?

The MVC framework uses application settings to some of its own configuration data. 
Connection strings are not used directly but are relied on for persistence for application 
models.

Access to configuration data is provided through the WebConfigurationManager class, defined in the 
System.Web.Configuration namespace. The WebConfigurationManager class makes it easy to work with the 
configuration system—but there are some oddities, as I’ll explain. There are several useful static members of the 
WebConfigurationManager class, as described in Table 9-5.



Chapter 9 ■ Configuration

185

Note■■  T he classes that ASP.NET provides for obtaining configuration information also allow changes to be made to the 
configuration. I think this is a terrible idea; in fact, I think it is such a bad idea that I am not going to demonstrate how it 
is done. I sometimes come across projects that try to modify the configuration as the application is running and it always 
ends badly.

Using Application Settings
Application settings are simple key-value pairs and are the easiest way to extend the configuration to define values  
that are specific to an application. Listing 9-3 shows the application settings that I added to the application-level  
Web.config file (the one that is at the root level in the Visual Studio project).

Listing 9-3.  Defining Application Settings in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
    <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
    <add key="defaultCity" value="New York"/>
    <add key="defaultCountry" value="USA"/>
    <add key="defaultLanguage" value="English"/>
  </appSettings>
   

Table 9-5.  The Most Useful Members Defined by the WebConfigurationManager Class

Name Description

AppSettings Returns a collection of key-value pairs used to define simple 
application-specific settings. See the “Using Application Settings” 
section for details.

ConnectionStrings Returns a collection of ConnectionStringSettings objects that 
describe the connection strings. See the “Using Connection Strings” 
section for details.

GetWebApplicationSection(section) Returns an object that can be used to get information about the 
specified configuration section at the application level. This method will 
ignore any folder-level configuration even if the current request targets 
such a folder. See the “Grouping Settings Together” section for details.

OpenWebConfiguration(path) Returns a System.Configuration.Configuration object that reflects 
the complete configuration at the specified level. See the “Overriding 
Configuration Settings” section for details.



Chapter 9 ■ Configuration

186

  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
</configuration> 

Tip■■  T he configuration examples in this chapter all follow a related theme, which is to express the default values that 
a new user account might require. This is one of the most common uses for configuration data in the projects that I see in 
development—and is often hard-coded into the application components.

The Web.config file that Visual Studio created for the project already has an appSettings element, which 
is defined within the top-level configuration element. There can be only one appSettings element in the 
configuration file (unless you are using a location element, which I describe later in this chapter), so I have added to 
the existing element to define some new settings.

Tip■■   Don’t confuse application settings with application state, which I describe in Chapter 10. Application settings are 
read-only values that are used to define custom configuration values, while application state is used for data values that 
can change as the application is running.

ASP.NET configuration files have a well-defined XML schema, which allows for some useful features. One 
such feature is that some configuration elements—including the appSettings element—are actually collections 
of properties and values. To control the content of the collection, you can use three different child elements within 
appSettings, as described in Table 9-6.

Table 9-6.  The Elements Used to Control the Contents of a Configuration Collection

Name Description

add Defines a new application setting. The attributes supported by this element are key and value, 
which define the name of the setting and its value.

clear Removes all of the application settings. No attributes are supported.

remove Removes a single application setting, specified by the key attribute.

In Listing 9-3, I used the add element to define three new settings: defaultCity, defaultCountry, and 
defaultLanguage.

Tip■■   You can get complete details of the XML schema used for configuration files from MSDN.  
See http://msdn.microsoft.com/en-us/library/zeshe0eb(v=vs.100).aspx.

http://msdn.microsoft.com/en-us/library/zeshe0eb(v=vs.100).aspx


Chapter 9 ■ Configuration

187

Reading Application Settings
Reading application settings is done through the WebConfigurationManager.AppSettings property, which returns an 
instance of the NameValueCollection class, defined in the System.Collections.Specialized namespace. There are 
four useful properties for reading application settings, as described in Table 9-7.

In Listing 9-4, you can see how I have updated the Index action in the Home controller to read application settings.

Listing 9-4.  Reading Application Settings in the HomeController.cs File

using System.Collections.Generic;
using System.Web.Mvc;
using System.Web.Configuration;
 
namespace ConfigFiles.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            foreach (string key in WebConfigurationManager.AppSettings) {
                configData.Add(key, WebConfigurationManager.AppSettings[key]);
            }
            return View(configData);
        }
    }
}
 

I have used a standard foreach loop to iterate through the set of application settings’ names and add them—and 
the corresponding values—to the view model Dictionary. You can see the effect by starting the application and 
requesting the /Home/Index URL, as shown in Figure 9-3.

Table 9-7.  The NameValueCollection Properties Useful for Reading Application Settings

Name Description

AllKeys Returns a string array containing the application settings’ names

Count Returns the number of application settings

Item[index] Returns the value of the application setting at the specified index

Item[key] Returns the value of the application setting with the specified key



Chapter 9 ■ Configuration

188

I enumerated all of the application settings, which is helpful to demonstrate how the configuration system works 
but isn’t a realistic demonstration of how settings are usually consumed. In Listing 9-5, you can see that I have added 
a DisplaySingle action method to the Home controller, which uses an application setting to vary the model data sent 
to the view.

Listing 9-5.  Adding an Action Method in the HomeController.cs File

using System.Collections.Generic;
using System.Web.Mvc;
using System.Web.Configuration;
 
namespace ConfigFiles.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            foreach (string key in WebConfigurationManager.AppSettings) {
                configData.Add(key, WebConfigurationManager.AppSettings[key]);
            }
            return View(configData);
        }
 

Figure 9-3.  Reading the application settings



Chapter 9 ■ Configuration

189

        public ActionResult DisplaySingle() {
            return View((object)WebConfigurationManager.AppSettings["defaultLanguage"]);
        }
    }
}
 

In the new action method, I get the value of the defaultLanguage application setting and use it as the view model 
data. Listing 9-6 shows the view that I created for the action method.

Listing 9-6.  The Contents of the DisplaySingle.cshtml File

@model string
@{
    Layout = null;
}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Single Config Value</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>body { padding-top: 10px; }</style>
</head>
<body class="container">
    <div class="alert alert-success">
        Value: @Model
    </div>
</body>
</html>
 

Defining simple settings in the configuration file has a number of benefits. First, settings are not hard-coded in 
the components of the application, such as models and views, and this means that making changes is simple and 
easy. Second, Visual Studio includes a useful feature that will automatically transform a configuration file for testing 
or deployment, which makes it easy to consistently change settings as an application moves out of development and 
toward production. Finally, using application settings makes it easy to ensure that all of the components that rely on a 
setting have the same value—something that is hard to do with hard-coded values. Start the application and request 
the /Home/DisplaySingle URL to see the effect of the new action method and its reliance on an application setting,  
as illustrated by Figure 9-4.

Figure 9-4.  Obtaining a single configuration value



Chapter 9 ■ Configuration

190

Using Connection Strings
The second type of setting that can be defined in a configuration file is a connection string. You have almost certainly 
defined connection strings in your MVC framework applications because they are most often used to define the 
connection details required for databases.

Although most connection strings are used to configure database connections, they actually represent a more 
flexible mechanism that can be used to describe any kind of connection to an external resource. There are two parts to 
a connection string: the name of the provider class that will be instantiated to establish the connection and the string 
that the provider will use to do its work. The format of the string isn’t standardized because it has to make sense only 
to the provider, but in Listing 9-7 I have added a connection string to the application-level Web.config file that uses a 
format you may well recognize.

Caution■■  T he value for the connectionString attribute of the add element is too long to fit on the printed page, so it 
is shown wrapped on two lines. The configuration system can’t cope with values that span two lines, so you must ensure 
that the complete string is on a single line in your project.

Listing 9-7.  Adding a Connection String to the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
    <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
    <add key="defaultCity" value="New York"/>
    <add key="defaultCountry" value="USA"/>
    <add key="defaultLanguage" value="English"/>
  </appSettings>
 
  <connectionStrings>
    <add name="EFDbContext" connectionString="Data Source=(localdb)\v11.0;Initial
          Catalog=SportsStore;Integrated Security=True"
        providerName="System.Data.SqlClient"/>
  </connectionStrings>
   
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
 
</configuration>
 

I don’t want to get into setting up a database in this chapter, so I took the connection string in the listing from 
the SportsStore example in my Pro ASP.NET MVC 5 book, where I used it to connect the web application to a local 
database containing product data.



Chapter 9 ■ Configuration

191

Connection strings are defined within the configuration/connectionStrings element, which, like 
appSettings, is expressed as a collection. That means new connection strings are defined using the add element and 
that connection strings can be changed using the clear and remove elements. When using the add element to define a 
connection string, there are three attributes that you may use, as described in Table 9-8.

Table 9-8.  The add Element Attributes for Defining Connection Strings

Name Description

name The name with which the connection string will be referred to

connectionString The string that tells the provider class how to connect to the external server or resource

providerName The name of the provider class that will create and manage the connection

In the listing, my connection string uses the providerName attribute to specify that the System.Data.SqlClient 
class will be used as the provider, and the connectionString attribute specifies a string in a format that the SqlClient 
class can understand.

Reading Connection Strings
You won’t usually need to read connection strings from the configuration unless you are writing a provider class or code 
that manages them, but in Listing 9-8 you can see how I have used the WebConfigurationManager.ConnectionStrings 
property to get the connection string details.

Listing 9-8.  Reading a Connection String in the HomeController.cs File

using System.Collections.Generic;
using System.Web.Mvc;
using System.Web.Configuration;
using System.Configuration;
 
namespace ConfigFiles.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            foreach (ConnectionStringSettings cs in
                    WebConfigurationManager.ConnectionStrings) {
                configData.Add(cs.Name, cs.ProviderName + " " + cs.ConnectionString);
            }
            return View(configData);
        }
 
        public ActionResult DisplaySingle() {
            return View((object)WebConfigurationManager
                .ConnectionStrings["EFDbContext"].ConnectionString);
        }
    }
}
 



Chapter 9 ■ Configuration

192

The ConnectionStrings property returns a collection of ConnectionStringSettings objects (defined in the 
System.Configuration namespace) that represent the configuration settings through the Name, ProviderName, and 
ConnectionString properties. In the listing, I enumerate all of the connection strings in the Index action and get 
the details of a connection string by name in the DisplaySingle action. Figure 9-5 shows the result of starting the 
application and requesting the /Home/Index URL.

Figure 9-5.  Enumerating the connection strings

There are two connection strings shown, even though I defined only one in Listing 9-7. When working with 
configuration data, it is important to remember that the data you are presented with is merged from the set of files  
I described in Table 9-3. In this example, the LocalSqlServer connection string is defined in the Machine.config file 
as a default connection string.

Grouping Settings Together
Application settings are useful for simple or self-contained settings, but for more complex configurations they quickly 
get out of hand because every setting is expressed as part of a flat list of key-value pairs.

ASP.NET uses odd terminology to describe the features that can be used to add structure to a configuration file by 
grouping related settings. Configuration sections are XML elements that have one or more attributes, and configuration 
groups are elements that contain one or more configuration sections. The application-level Web.config file contains  
a good example of both, as follows:
 
<?xml version="1.0" encoding="utf-8"?>
<configuration>
 
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
    <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
    <add key="defaultCity" value="New York"/>
    <add key="defaultCountry" value="USA"/>
    <add key="defaultLanguage" value="English"/>
  </appSettings>
 



Chapter 9 ■ Configuration

193

  <connectionStrings>
    <add name="EFDbContext" connectionString="Data Source=(localdb)\v11.0;
            Initial Catalog=SportsStore;Integrated Security=True"
        providerName="System.Data.SqlClient"/>
  </connectionStrings>
 
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
 
</configuration>
 

The system.web element is a configuration group, and the compilation and httpRuntime elements are 
configuration sections. The configuration group brings together settings that define how the ASP.NET platform and 
the application behave. The configuration sections define related settings. For example, the compilation section has 
attributes that control whether debug mode is enabled and what version of .NET will be used. In the sections that follow, 
I’ll show you how to read configuration sections in an application and explain how to create your own. Table 9-9 puts 
configuration sections into context.

Table 9-9.  Putting the Basic ASP.NET Configuration Sections in Context

Question Answer

What is it? Configuration sections group related settings as attributes on a custom XML element.

Why should I care? Configuration sections require more work than application settings, but they are less prone 
to typos and provide support for validating the values in configuration files.

How is it used by the  
MVC framework?

The MVC framework defines configuration sections in the Views/web.config file to 
configure view rendering.

Creating a Simple Configuration Section
To demonstrate how to create a configuration section, it is easier to show the process in reverse, starting with the 
configuration values and working back through the process of creating the section that defines them. In Listing 9-9,  
I have added a new configuration section to the Web.config file.

Listing 9-9.  Adding a New Configuration Section to the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
    <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
    <add key="defaultCity" value="New York"/>
    <add key="defaultCountry" value="USA"/>
    <add key="defaultLanguage" value="English"/>
  </appSettings>
 



Chapter 9 ■ Configuration

194

  <connectionStrings>
    <add name="EFDbContext" connectionString="Data Source=(localdb)\v11.0;
            Initial Catalog=SportsStore;Integrated Security=True"
        providerName="System.Data.SqlClient"/>
  </connectionStrings>
 
  <newUserDefaults city="Chicago" country="USA" language="English" regionCode="1"/>
 
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
 
</configuration>
 

The configuration section is represented by the newUserDefaults element, which defines city, country, 
language, and regionCode attributes. The first three attributes correspond to the application settings I defined earlier, 
and I added the regionCode attribute to demonstrate how configuration settings can be used to automatically parse 
numeric values. This may not seem like a significant improvement over using application settings, but you’ll see that 
there are some advantages of taking the time to create custom configuration sections for your applications.

Tip■■   You will see an error if you start the application at this point because all of the elements in a configuration file 
need to be supported by a section definition and handler class, both of which I create in the following sections.

Creating the Configuration Section Handler Class
Configuration sections are processed by a handler class, which is responsible for processing the information  
from the configuration file and presenting it to the application. Handler classes are derived from the  
System.Configuration.ConfigurationSection class and define properties that correspond to the attributes of the 
XML element they support. I created an Infrastructure folder in the example application and added to it a class file 
called NewUserDefaultsSection.cs, the contents of which can be seen in Listing 9-10.

Listing 9-10.  The Contents of the NewUserDefaultsSection.cs File

using System.Configuration;
 
namespace ConfigFiles.Infrastructure {
    public class NewUserDefaultsSection : ConfigurationSection {
 
        [ConfigurationProperty("city", IsRequired = true)]
        public string City {
            get { return (string)this["city"]; }
            set { this["city"] = value; }
        }
 
        [ConfigurationProperty("country", DefaultValue = "USA")]
        public string Country {
            get { return (string)this["country"]; }
            set { this["country"] = value; }
        }
 



Chapter 9 ■ Configuration

195

        [ConfigurationProperty("language")]
        public string Language {
            get { return (string)this["language"]; }
            set { this["language"] = value; }
        }
 
        [ConfigurationProperty("regionCode")]
        [IntegerValidator(MaxValue = 5, MinValue = 0)]
        public int Region {
            get { return (int)this["regionCode"]; }
            set { this["regionCode"] = value; }
        }
    }
}
 

The names of the properties usually match the attribute names with the first letter capitalized, although this is just 
a convention and property names should make it obvious which attributes they relate to. You can use any name for the 
properties; for example, the property that represents the regionCode attribute is called Region in the handler class.

The base for configuration sections is the ConfigurationSection class, which defines a protected collection 
used to store the configuration values. This collection is available through the this indexer, and I implement each 
property so that the set and get blocks assign and retrieve values from the this collection, like this:
 
...
public string City {
    get { return (string)this["city"]; }
    set { this["city"] = value; }
}
...
 

The next step is to apply the ConfigurationProperty attribute to each property. The first parameter is the name 
of the attribute in the configuration file that the property corresponds. There are some optional parameters that refine 
the property behavior, as shown in Table 9-10.

Table 9-10.  The Parameters Used with the ConfigurationProperty Attribute

Name Description

DefaultValue This specifies the default value for the property if one is not set in the configuration file.

IsDefaultCollection This is used when a configuration section manages a collection of elements.

IsRequired When set to true, an exception will be thrown if a value is not defined in the hierarchy for 
this property.

The use of the attribute parameters is optional, but they help prevent configuration mistakes from causing 
unexpected behaviors when the application is running. The DefaultValue parameter ensures that there is a sensible 
fallback value when one is not supplied in the configuration files, and the IsRequired parameter allows ASP.NET to 



Chapter 9 ■ Configuration

196

report a configuration exception rather than letting code fail when it tries to read the configuration property values.  
In the listing, I have used IsRequired on the City property and DefaultValue on the Country property, as follows:
 
...
[ConfigurationProperty("city", IsRequired = true)]
public string City {
    get { return (string)this["city"]; }
    set { this["city"] = value; }
}
 
[ConfigurationProperty("country", DefaultValue = "USA")]
public string Country {
    get { return (string)this["country"]; }
    set { this["country"] = value; }
}
...
 

When ASP.NET processes the configuration section, it instantiates the handler class and sets the properties using 
the values in the file. ASP.NET will report an error if it can’t convert a value from the configuration file into the type of 
the handler class property, but it is possible to be more specific about the range of allowed values by applying a set of 
validation attributes, such as the IntegerValidator attribute that I applied to the Region property:
 
...
[ConfigurationProperty("regionCode")]
[IntegerValidator(MaxValue = 5, MinValue = 0)]
public int Region {
    get { return (int)this["regionCode"]; }
    set { this["regionCode"] = value; }
}
...
 

The MinValue and MaxValue parameters specify the range of acceptable values for this property, and the ASP.NET 
framework will report an error if the value specified in the configuration file is outside this range or cannot be parsed to an 
int value. Table 9-11 describes the full set of validation attributes, all of which are defined in the System.Configuration 
namespace.

Table 9-11.  The Configuration Validation Attribtutes

Name Description

CallbackValidator Used to perform custom validation; see the text following the table.

IntegerValidator Used to validate int values. By default, this attribute accepts values within the range 
defined by the MinValue and MaxValue parameters, but you can use the ExcludeRange 
parameter to true to exclude values in that range instead.

LongValidator Used to validate long values. This defines the same parameters as the 
IntegerValidator.

RegexStringValidator Used to ensure that a string value matches a regular expression. The expression is 
specified using the Regex parameter.

(continued)



Chapter 9 ■ Configuration

197

The validation attributes are easy to use, but the CallbackValidator allows you to specify a method that contains 
validation logic for custom configuration properties. Listing 9-11 shows the use of the CallbackValidator attribute 
applied to the NewUserDefaultsSection class.

Listing 9-11.  Performing Custom Validation in the NewUserDefaultsSection.cs File

using System.Configuration;
using System;
 
namespace ConfigFiles.Infrastructure {
    public class NewUserDefaultsSection : ConfigurationSection {
 
        [ConfigurationProperty("city", IsRequired = true)]
        [CallbackValidator(CallbackMethodName = "ValidateCity",
             Type = typeof(NewUserDefaultsSection))]
        public string City {
            get { return (string)this["city"]; }
            set { this["city"] = value; }
        }
 
        // ...other properties omitted for brevity...
 
        public static void ValidateCity(object candidateValue) {
            if ((string)candidateValue == "Paris") {
                throw new Exception("Unsupported City Value");
            }
        }
    }
}
 

The parameters for the CallbackValidator attribute are CallbackMethodName and Type, which are used to 
specify the method that should be called when the configuration data is processed. The method must be public and 
static, take a single object argument, and not return a result—the method throws an exception if the value passed 
as the argument is not acceptable. In the listing, I throw an exception if the value is Paris. (I could have achieved the 
same effect using the RegexStringValidator attribute, but I wanted to demonstrate the CallbackValidator attribute, 
which can be a lot more flexible.)

Name Description

StringValidator Used to perform simple validations on string values. The MinLength and MaxLength 
parameters constrain the length of the value, and the InvalidCharacters parameter is 
used to exclude characters.

TimeSpanValidator Used to validate time spans. The MinValueString and MaxValueString parameters 
restrict the range of values, expressed in the form 0:30:00. The MinValue and 
MaxValue parameters do the same thing but require TimeSpan values. When set to 
true, the ExcludeRange parameter excludes values that fall between the minimum and 
maximum values.

Table 9-11.  (continued)



Chapter 9 ■ Configuration

198

Defining the Section
The next step is to associate the handler class with the configuration section, which requires an addition to the 
Web.config file. All configuration sections have to be defined somewhere, but the ones used by ASP.NET, such as 
compilation and httpRuntime, are defined in higher-level files, so you won’t have seen the definition of them in the 
application-level Web.config file. Listing 9-12 shows the additions I made to the application-level Web.config file to 
define my custom configuration section.

Listing 9-12.  Defining a Custom Configuration Section in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 
  <configSections>
    <section name="newUserDefaults"
        type="ConfigFiles.Infrastructure.NewUserDefaultsSection"/>
  </configSections>
 
  <!-- ...application settings and connection strings omitted for brevity... -->
 
  <newUserDefaults city="Chicago" country="USA" language="English" regionCode="1"/>
 
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
 
</configuration>
 

The configSections element is used to define new sections and section groups. I used the section element in 
the listing, which defines the attributes shown in Table 9-12.

Table 9-12.  The Attributes Defined by the configSections/section Element

Name Description

allowDefinition Used to limit where the section can be defined. The values are Everywhere (the section can be 
defined anywhere in the configuration hierarchy), MachineToApplication (the section can be 
defined in the hierarchy from the Machine.config through to the app-level Web.config file), 
MachineToWebRoot (in the Machine.config or the global Web.config file), and MachineOnly 
(only in the Machine.config file). If the attribute is omitted, then the default value of 
Everywhere is used.

allowLocation Specifies whether the section can be defined in location elements. The default is true.  
See the “Overriding Configuration Settings” section for details of location elements.

name The name of the section.

Type The name of the handler class.

Using the table, you can see I have defined my new section with the name newUserDefaults, specified the 
NewUserDefaultsSection handler class, and accepted the default values for the allowDefinition and allowLocation 
attributes.



Chapter 9 ■ Configuration

199

Reading Configuration Sections
All that remains is to read the values from the custom configuration section, which is done through the 
WebConfigurationManager. Listing 9-13 shows the changes I made to the Home controller to read the settings in the 
newUserDefaults section.

Listing 9-13.  Reading Values from a Configuration Section

using System.Collections.Generic;
using System.Web.Mvc;
using System.Web.Configuration;
using System.Configuration;
using ConfigFiles.Infrastructure;
 
namespace ConfigFiles.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
 
            NewUserDefaultsSection nuDefaults = WebConfigurationManager
                .GetWebApplicationSection("newUserDefaults") as NewUserDefaultsSection;
            if (nuDefaults != null) {
                configData.Add("City", nuDefaults.City);
                configData.Add("Country", nuDefaults.Country);
                configData.Add("Language", nuDefaults.Language);
                configData.Add("Region", nuDefaults.Region.ToString());
            };
            return View(configData);
        }
 
        public ActionResult DisplaySingle() {
            return View((object)WebConfigurationManager
                .ConnectionStrings["EFDbContext"].ConnectionString);
        }
    }
}
 

The WebConfigurationManager.GetWebApplicationSection method takes the name of the section as its 
argument and returns an instance of the handler class, which is NewUserDefaultsSection in this case. I can then use 
the properties defined by the handler class to read the configuration values. To see the result, start the application and 
request the /Home/Index URL, as shown in Figure 9-6.



Chapter 9 ■ Configuration

200

Creating a Collection Configuration Section
Simple configuration sections are useful when you want to define a set of related values, such as the defaults for users 
in the previous section. If you want to define a set of repeating values, then you can define a collection configuration 
section, of which the appSettings and connectionStrings sections are examples. Configuration values are added to 
the collection with the add element and deleted from the collection using the remove element, and the collection is 
reset entirely with the clear element.

Once again, I am going to start by adding a configuration section to Web.config and then work back to define the 
supporting features. Listing 9-14 shows the addition of a custom collection configuration section to the application-level 
Web.config file.

Listing 9-14.  Adding a Collection Configuration Section to the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 
  <configSections>
    <section name="newUserDefaults"
        type="ConfigFiles.Infrastructure.NewUserDefaultsSection"/>
  </configSections>
 
  <!-- ...application settings and connection strings omitted for brevity... -->
 
  <newUserDefaults city="Chicago" country="USA" language="English" regionCode="1"/>
 
  <places default="LON">
    <add code="NYC" city="New York" country="USA" />
    <add code="LON" city="London" country="UK" />
    <add code="PAR" city="Paris" country="France" />
  </places>
 

Figure 9-6.  Reading a configuration section



Chapter 9 ■ Configuration

201

  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
 
</configuration>

Creating the Item Handler Class
The process for supporting this kind of configuration section is a little more complex than for a basic section. The first 
step is to create a class that will represent each of the items that the add element creates. To this end, I added a class 
file called Place.cs to the Infrastructure folder and used it to define the class shown in Listing 9-15.

Listing 9-15.  The Contents of the Place.cs File

using System;
using System.Configuration;
 
namespace ConfigFiles.Infrastructure {
 
    public class Place : ConfigurationElement {
 
        [ConfigurationProperty("code", IsRequired = true)]
        public string Code {
            get { return (string)this["code"]; }
            set { this["code"] = value; }
        }
 
        [ConfigurationProperty("city", IsRequired = true)]
        public string City {
            get { return (string)this["city"]; }
            set { this["city"] = value; }
        }
 
        [ConfigurationProperty("country", IsRequired = true)]
        public String Country {
            get { return (string)this["country"]; }
            set { this["country"] = value; }
        }
    }
}
 

The handler class for individual collection items is derived from the ConfigurationElement class and defines 
properties that correspond to the attributes on the add element. The add element can define any attributes you need 
to represent the data, which is why the add element for, say, application settings has different attributes from the one 
used for connection strings. The class in Listing 9-15 has properties for Code, City, and Country, which I will use to 
define a set of cities. The properties in the handler class are decorated with the ConfigurationProperty attribute, 
which is used in the same way as the previous example.



Chapter 9 ■ Configuration

202

Creating the Collection Handler Class
I also need to create a handler class for the overall collection of configuration elements. The job of the handler class is 
to override a series of methods that the ASP.NET platform will use to populate the collection. I added a class file called 
PlaceCollection.cs to the Infrastructure folder and used it to define the class shown in Listing 9-16.

Listing 9-16.  The Contents of the PlaceCollection.cs File

using System.Configuration;
 
namespace ConfigFiles.Infrastructure {
 
    public class PlaceCollection : ConfigurationElementCollection {
 
        protected override ConfigurationElement CreateNewElement() {
            return new Place();
        }
 
        protected override object GetElementKey(ConfigurationElement element) {
            return ((Place)element).Code;
        }
 
        public new Place this[string key] {
            get { return (Place)BaseGet(key); }
        }
    }
}
 

The base class is ConfigurationElementCollection, which is integrated with the other classes in the  
System.Configuration namespace. My implementation has to override the CreateNewElement method to create 
instances of the item handler class (Place in this example) and has to override the GetElementKey method to return 
a key that will be used to store an item in the collection—I used the value of the Code property. I have also added an 
indexer so that I can request items directly by key; the base class already defines a protected indexer, so I had to apply 
the new keyword to hide the base implementation.

Creating the Configuration Section Handler Class
The last handler class is for the configuration section itself. I added a class file called PlaceSection.cs to the 
Infrastructure folder and used it to define the class shown in Listing 9-17.

Listing 9-17.  The Contents of the PlaceSection.cs File

using System.Configuration;
 
namespace ConfigFiles.Infrastructure {
 
    public class PlaceSection : ConfigurationSection {
        [ConfigurationProperty("", IsDefaultCollection = true)]
        [ConfigurationCollection(typeof(PlaceCollection))]
        public PlaceCollection Places {
            get { return (PlaceCollection)base[""]; }
        }
 



Chapter 9 ■ Configuration

203

        [ConfigurationProperty("default")]
        public string Default {
            get { return (string)base["default"]; }
            set { base["default"] = value; }
        }
    }
}
 

The complexity in managing the configuration section is contained in the other handler classes. For the section 
handler, all that I need to do is create a property that returns an instance of the collection handler class, which I have 
called Places, and apply two attributes to it.

The ConfigurationProperty attribute is applied with an empty string for name and the IsDefaultCollection 
parameter set to true. This tells the ASP.NET framework that the add, remove, and clear elements in the configuration 
section will be applied to this collection. The empty string is also used in the property getter and is a special 
incantation that sets up the collection. The ConfigurationCollection attribute tells the ASP.NET framework what 
collection class should be instantiated to hold the configuration items—in this example, the PlaceCollection class.

When I defined the configuration data in Listing 9-14, I included an attribute on the section element, like this:
 
...
<places default="LON">
  <add code="NYC" city="New York" country="USA" />
  <add code="LON" city="London" country="UK" />
  <add code="PAR" city="Paris" country="France" />
</places>
...
 

This is a common technique for collections, which define the range of allowable values and use an element 
to specify the default value if one has not otherwise been selected. In Listing 9-17, I added the Default property to 
provide access to the value of the default attribute, which I am able to obtain using the indexer provided by the base 
handler class.

Defining the Configuration Section
Now that the (many) handler classes are in place, I can define the collection configuration section in the Web.config 
file, which has the effect of associating the handlers with the XML element. Listing 9-18 shows the addition I made to 
the configSections element in the application-level Web.config file.

Listing 9-18.  Adding a New Configuration Section to the Web.config File

...
<configSections>
  <section name="newUserDefaults"
            type="ConfigFiles.Infrastructure.NewUserDefaultsSection"/>
  <section name="places" type="ConfigFiles.Infrastructure.PlaceSection"/>
</configSections>
...
 

There are no special attributes required to define a collection section; the complexity of the collection is managed 
by the section handler class.



Chapter 9 ■ Configuration

204

Reading Collection Configuration Sections
The process for reading collection configuration sections is similar to that for simple sections. Listing 9-19 shows the 
changes that I made to the Home controller to read the values for the places section.

Listing 9-19.  Reading a Collection Configuration Section in the HomeController.cs File

using System.Collections.Generic;
using System.Web.Mvc;
using System.Web.Configuration;
using System.Configuration;
using ConfigFiles.Infrastructure;
 
namespace ConfigFiles.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            PlaceSection section = WebConfigurationManager
                .GetWebApplicationSection("places") as PlaceSection;
            foreach (Place place in section.Places) {
                configData.Add(place.Code, string.Format("{0} ({1})",
                    place.City, place.Country));
            }
            return View(configData);
        }
 
        public ActionResult DisplaySingle() {
            PlaceSection section = WebConfigurationManager
                .GetWebApplicationSection("places") as PlaceSection;
            Place defaultPlace = section.Places[section.Default];
            return View((object)string.Format("The default place is: {0}",
                defaultPlace.City));
        }
    }
}
 

I have used the Index action method to enumerate all of the configuration items in the collection. I use 
the WebConfigurationManager.GetWebApplicationSection method to get an instance of the section handler 
class (PlaceSection) and read the value of the Places property to get an instance of the collection handler class 
(PlaceCollection). I use a foreach loop to obtain each item handler class (Place) and add the individual property 
values, which are obtained from the attributes of the add element, to the view data.

For the DisplaySingle action method, I read the value of the PlaceSection.Default property to get the value  
of the default attribute and use this as a key to retrieve the corresponding Place object. You can see the output from 
both action methods by starting the application and requesting the /Home/Index and /Home/DisplaySingle URLs,  
as illustrated by Figure 9-7.



Chapter 9 ■ Configuration

205

Creating Section Groups
A section group—as the name suggests—allows configuration sections to be grouped together. The main reason for 
using section groups is to add further structure to the data in the configuration files in order to make it clear that 
section groups are related to one another and affect related parts of the application. Listing 9-20 shows the addition 
of a section group to contain the newUserDefaults and places sections in the Web.config file. I have also added the 
definition of the section group in the configSections element.

Listing 9-20.  Adding a Configuration Section Group to the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 
  <configSections>
    <sectionGroup name="customDefaults" type="ConfigFiles.Infrastructure.CustomDefaults">
      <section name="newUserDefaults"
          type="ConfigFiles.Infrastructure.NewUserDefaultsSection"/>
      <section name="places" type="ConfigFiles.Infrastructure.PlaceSection"/>
    </sectionGroup>
  </configSections>
 
  <!-- ...application settings and connection strings omitted for brevity... -->
 
  <customDefaults>
    <newUserDefaults city="Chicago" country="USA" language="English" regionCode="1"/>
    <places default="LON">
      <add code="NYC" city="New York" country="USA" />
      <add code="LON" city="London" country="UK" />
      <add code="PAR" city="Paris" country="France" />
    </places>
  </customDefaults>
 

Figure 9-7.  Reading a collection configuration section



Chapter 9 ■ Configuration

206

  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
   
</configuration>
 

You can see from the listing that a section group is a custom element that wraps one or more custom sections. 
The sectionGroup element tells ASP.NET which handler class will represent the section group and defines the 
relationship between the group and the sections it contains. In the listing, my section group is called customDefaults, 
the handler class is called CustomDefaults, and the section group will contain the newUserDefaults and places 
sections that I created earlier.

Creating the Section Group Handler Class
Section groups rely on handler classes, similar to the ones used for configuration sections. For my customDefaults 
section group, I added a class file called CustomDefaults.cs to the Infrastructure folder and used it to define the 
class shown in Listing 9-21.

Listing 9-21.  The Contents of the CustomDefaults.cs File

using System.Configuration;
 
namespace ConfigFiles.Infrastructure {
    public class CustomDefaults : ConfigurationSectionGroup {
 
        public NewUserDefaultsSection NewUserDefaults {
            get { return (NewUserDefaultsSection)Sections["newUserDefaults"]; }
        }
 
        public PlaceSection Places {
            get { return (PlaceSection)Sections["places"]; }
        }
    }
}
 

The purpose of the section group handler class is to expose properties that access the configuration sections that the 
group element contains. Section group handler classes are derived from the ConfigurationSectionGroup class, which 
defines a Sections property through which instances of section handler classes can be obtained by name, like this:
 
...
get { return (PlaceSection)Sections["places"]; }
...

Reading Section Groups
Reading section groups is a little more complex than reading individual sections because there is no direct 
convenience method in the WebConfigurationManager class. Instead, I have to obtain a System.Configuration.
Configuration object from WebConfigurationManager and then request the section group, as shown in Listing 9-22.



Chapter 9 ■ Configuration

207

Listing 9-22.  Reading a Section Group in the HomeController.cs File

using System.Collections.Generic;
using System.Web.Mvc;
using System.Web.Configuration;
using System.Configuration;
using ConfigFiles.Infrastructure;
 
namespace ConfigFiles.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
 
            CustomDefaults cDefaults
                = (CustomDefaults)WebConfigurationManager.OpenWebConfiguration("/")
                    .GetSectionGroup("customDefaults");
 
            foreach (Place place in cDefaults.Places.Places) {
                configData.Add(place.Code, string.Format("{0} ({1})",
                    place.City, place.Country));
            }
            return View(configData);
        }
 
        public ActionResult DisplaySingle() {
            PlaceSection section = WebConfigurationManager
                .GetWebApplicationSection("customDefaults/places") as PlaceSection;
            Place defaultPlace = section.Places[section.Default];
            return View((object)string.Format("The default place is: {0}",
                defaultPlace.City));
        }
    }
}
 

I have used the WebConfigurationManager.OpenWebConfiguration method in the Index action method to get 
the Configuration object, which allows me to call the GetSectionGroup method to get an instance of my handler 
class. The argument I have passed to the OpenWebConfiguration method specifies where in the configuration 
hierarchy the data will be read from, which I return to in the next section. Once I have obtained an instance of the 
section group handler class, I can access the properties it defines to get instances of the section handlers and read the 
configuration data.

You can see an alternative approach to dealing with section groups in the DisplaySingle action method, where 
I used the WebConfigurationManager.GetWebApplicationSection method and included the name of the section 
group along with the section, like this:
 
...
WebConfigurationManager.GetWebApplicationSection("customDefaults/places")
...
 

The configuration system is smart enough to navigate the elements in the configuration file and locate the  
correct section.



Chapter 9 ■ Configuration

208

Overriding Configuration Settings
The ASP.NET platform provides a means to override configuration values within an application, allowing you to 
change the settings for specific requests. These features were originally designed to work with Web Forms, where the 
requested URL corresponds directly with the file that will be used to generate the response. They don’t work quite 
as well with MVC framework applications, but I have included them in this chapter because I sometimes find them 
useful for applying quick patches to applications where an urgent fix is needed to buy time while a real solution is 
found and tested. Table 9-13 puts configuration overrides in context.

Table 9-13.  Putting Configuration Overrides in Context

Question Answer

What is it? Overriding configuration settings allows you to create different configurations for 
different parts of the application.

Why should I care? Overriding configuration settings allows you to specify only the changes you require, 
rather than duplicating the entire configuration.

How is it used by the  
MVC framework?

The MVC framework uses the Views/web.config file to configure the Razor view engine 
separately from the configuration for the rest of the framework.

Using the Location Element
The location element allows you to create sections in configuration files that are used for requests with specific URLs. 
In Listing 9-23, I have added a location element to the application-level Web.config file.

Listing 9-23.  Adding a location Element to the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 
  <configSections>
    <sectionGroup name="customDefaults" type="ConfigFiles.Infrastructure.CustomDefaults">
      <section name="newUserDefaults"
          type="ConfigFiles.Infrastructure.NewUserDefaultsSection"/>
      <section name="places" type="ConfigFiles.Infrastructure.PlaceSection"/>
    </sectionGroup>
  </configSections>
 
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
    <add key="defaultCity" value="New York"/>
    <add key="defaultCountry" value="USA"/>
    <add key="defaultLanguage" value="English"/>
  </appSettings>
 



Chapter 9 ■ Configuration

209

  <connectionStrings>
    <add name="EFDbContext" connectionString="Data Source=(localdb)\v11.0;Initial
          Catalog=SportsStore;Integrated Security=True"
        providerName="System.Data.SqlClient"/>
  </connectionStrings>
   
  <customDefaults>
    <newUserDefaults city="Chicago" country="USA" language="English" regionCode="1"/>
    <places default="LON">
      <add code="NYC" city="New York" country="USA" />
      <add code="LON" city="London" country="UK" />
      <add code="PAR" city="Paris" country="France" />
    </places>
  </customDefaults>
 
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
 
  <location path="Home/Index">
    <appSettings>
      <add key="defaultCity" value="London"/>
      <add key="defaultCountry" value="UK"/>
    </appSettings>
  </location>
   
</configuration>
 

The location element defines the path attribute, which identifies the URL that the overridden configuration 
applies to. In this case, I have specified the Home/Index URL, which means that the location element will be applied 
to requests that target the Index action on the Home controller.

Within the location element, you can define the configuration settings that you want to override for requests 
that target the path URL. In the listing, I have used an appSettings element to change two of the application settings 
that I defined earlier. To demonstrate the effect, I have updated the Home controller to read the application settings,  
3as shown in Listing 9-24.

Listing 9-24.  Reading Application Settings in the HomeController.cs File

using System.Collections.Generic;
using System.Web.Configuration;
using System.Web.Mvc;
 
namespace ConfigFiles.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            foreach (string key in WebConfigurationManager.AppSettings.AllKeys) {
                configData.Add(key, WebConfigurationManager.AppSettings[key]);
            }
            return View(configData);
        }
 



Chapter 9 ■ Configuration

210

        public ActionResult OtherAction() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            foreach (string key in WebConfigurationManager.AppSettings.AllKeys) {
                configData.Add(key, WebConfigurationManager.AppSettings[key]);
            }
            return View("Index", configData);
        }
    }
}
 

As well as modifying the Index action method, I have replaced the DisplaySingle action with the OtherAction 
method that contains the same code as the Index action. Both the Index and OtherAction action methods read 
application settings, but the location element means that the DisplaySingle action method will be provided with a 
different set of values. To see the difference, start the application and request the /Home/Index and /Home/OtherAction 
URLs, as shown in Figure 9-8.

Figure 9-8.  The effect of using the location element

Only the application settings that I included in the location element have changed. The other values are inherited, 
which means that when the WebConfigurationManager class is used, it merges the data in the hierarchy of files with 
the contents of the location element to present a unique view of the data to a single action method.



Chapter 9 ■ Configuration

211

Caution■■  T he problem with this approach is that the value of the path attribute doesn’t take into account the effect 
of the routing system, so changes to the routes in an application can render a location element ineffective. This isn’t 
a problem in classic Web Forms projects but has the effect of limiting the use of the location element when routing is 
used, either with Web Forms or in the MVC framework.

Using Folder-Level Files
You can define Web.config files in individual folders and use them to extend the hierarchy of configuration files.  
This feature is a little harder to work with because you have to explicitly request the configuration file you want  
(and work with some different classes), but it does have the benefit of not being tied to the requested URL so it can be 
used in multiple controllers and action methods. To get started, I added a Web.config file to the Views/Home folder 
and defined the configuration elements shown in Listing 9-25.

Listing 9-25.  The Contents of the Web.config File in the Views/Home Folder

<?xml version="1.0"?>
<configuration>
  <appSettings>
    <add key="defaultCity" value="Paris"/>
    <add key="defaultCountry" value="France"/>
  </appSettings>
</configuration>
 

I have used the appSettings element to define new values for the defaultCity and defaultCountry application 
settings. To read these values, I have updated the OtherAction method in the Home controller, as shown in Listing 9-26.

Listing 9-26.  Reading a Folder-Level Configuration in the HomeController.cs File

using System.Collections.Generic;
using System.Configuration;
using System.Web.Configuration;
using System.Web.Mvc;
 
namespace ConfigFiles.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            foreach (string key in WebConfigurationManager.AppSettings.AllKeys) {
                configData.Add(key, WebConfigurationManager.AppSettings[key]);
            }
            return View(configData);
        }
 
        public ActionResult OtherAction() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            AppSettingsSection appSettings =
                WebConfigurationManager.OpenWebConfiguration("~/Views/Home").AppSettings;



Chapter 9 ■ Configuration

212

            foreach (string key in appSettings.Settings.AllKeys) {
                configData.Add(key, appSettings.Settings[key].Value);
            }
            return View("Index", configData);
        }
    }
}
 

I have called the WebConfigurationManager.OpenWebConfiguration method, which takes a path as its 
arguments. Paths are a central part of the Web Forms programming model, but in an MVC framework application 
they can be used to specify the location of the folder-level configuration file. The path must be prefixed with a tilde 
character (~) followed by the name of the folder that contains the Web.config file; in this case, I have specified  
Views/Home, which is the location of the file I created in Listing 9-25.

The OpenWebConfiguration method returns an instance of the Configuration class, which is defined in the 
System.Configuration namespace. The Configuration class provides access to all the features I described in this 
chapter but does it using a different set of methods and properties from the WebConfigurationManager class. (In fact, 
the WebConfigurationManager class relies on the System.Configuration namespace for its functionality, but with an 
emphasis on ease of use in web applications.)

Caution■■   Don’t create a folder hierarchy that matches the URLs that your application supports, such as a Home/Index 
folder. The routing configuration is set up to not route requests that correspond to folders on the disk, and you’ll see  
an error. Instead, either define a separate top-level folder to contain your folder-level configuration files or use the Views 
folder, as I have done in the example.

The Configuration.AppSettings property returns an AppSettingsSection object, which exposes a collection of 
the application settings through its Settings property. I use this collection to enumerate the application settings and 
generate the view model data.

When you request a Configuration object through the OpenWebConfiguration method, the contents of the 
Web.config file in the folder that you specify are merged with the contents of the files higher in the hierarchy. This 
includes any folder-level files that exist in folders that are closer to the root of the project. I defined the Web.config 
file in Listing 9-25 in the Views/Home folder, but Visual Studio created a web.config file in the Views folder when the 
project was started. To show that all of the files in the hierarchy are used to create the configuration data, I added an 
application setting to the Views/web.config file, as shown in Listing 9-27.

Tip■■  T he name of the Web.config file is not case-sensitive. Web.config and web.config are both acceptable names 
for folder-level configuration files.

Listing 9-27.  Adding an Application Setting to the web.config file in the Views Folder

<?xml version="1.0"?>
 
<configuration>
  <configSections>
    <sectionGroup name="system.web.webPages.razor"
        type="System.Web.WebPages.Razor.Configuration.RazorWebSectionGroup,
        System.Web.WebPages.Razor, Version=3.0.0.0, Culture=neutral,



Chapter 9 ■ Configuration

213

        PublicKeyToken=31BF3856AD364E35">
      <section name="host" type="System.Web.WebPages.Razor.Configuration.HostSection,
        System.Web.WebPages.Razor, Version=3.0.0.0, Culture=neutral,
        PublicKeyToken=31BF3856AD364E35" requirePermission="false" />
      <section name="pages"
        type="System.Web.WebPages.Razor.Configuration.RazorPagesSection,
        System.Web.WebPages.Razor, Version=3.0.0.0, Culture=neutral,
        PublicKeyToken=31BF3856AD364E35" requirePermission="false" />
    </sectionGroup>
  </configSections>
 
  <system.web.webPages.razor>
    <host factoryType="System.Web.Mvc.MvcWebRazorHostFactory, System.Web.Mvc,
         Version=5.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
    <pages pageBaseType="System.Web.Mvc.WebViewPage">
      <namespaces>
        <add namespace="System.Web.Mvc" />
        <add namespace="System.Web.Mvc.Ajax" />
        <add namespace="System.Web.Mvc.Html" />
        <add namespace="System.Web.Routing" />
        <add namespace="ConfigFiles" />
      </namespaces>
    </pages>
  </system.web.webPages.razor>
 
  <appSettings>
    <add key="webpages:Enabled" value="false" />
    <add key="defaultLanguage" value="French"/>
  </appSettings>
 
  <system.webServer>
    <handlers>
      <remove name="BlockViewHandler"/>
      <add name="BlockViewHandler" path="*" verb="*"
          preCondition="integratedMode" type="System.Web.HttpNotFoundHandler" />
    </handlers>
  </system.webServer>
</configuration>
 

The Views/web.config file is used by the MVC framework to configure the Razor view engine, and you wouldn’t 
usually add configuration elements for the application. But that’s just convention, and you can see the effect of my 
addition by starting the application and requesting the /Home/OtherAction URL, as shown in Figure 9-9.



Chapter 9 ■ Configuration

214

As the figure shows, the set of application settings consists of those defined by the application-level Web.config 
file, supplemented by those in the folder-level files in the Views and Views/Home folders.

Navigating the ASP.NET Configuration Elements
The examples so far in this chapter have been focused on defining configuration settings for an application, largely 
because that’s the most common reason for using the configuration system. However, the settings that control the 
behavior of the ASP.NET platform and the MVC framework are also defined in the configuration files and are available 
to be read within an application. This isn’t a common task—and I won’t spend much time on it—but I find it useful 
when I suspect that a problem I am tracking down is caused by a configuration problem.

The ASP.NET configuration elements are contained in the system.web section, and the handler classes are 
defined in the System.Web.Configuration namespace. When you request a configuration section or section group 
through the WebConfigurationManager class, it will be represented by one of the classes in that namespace. I have 
listed the most commonly used handler classes in Table 9-14. There are others, but some of them are just for backward 
compatibility or have no bearing in an MVC framework application.

Figure 9-9.  Using a folder-level configuration file



Chapter 9 ■ Configuration

215

To demonstrate reading the ASP.NET settings, I have modified the Home controller so that it displays details of the 
compilation section, as shown in Listing 9-28.

Listing 9-28.  Reading ASP.NET Configuration Elements in the HomeController.cs File

using System.Collections.Generic;
using System.Configuration;
using System.Web.Configuration;
using System.Web.Mvc;
 
namespace ConfigFiles.Controllers {
 
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, string> configData = new Dictionary<string, string>();
            SystemWebSectionGroup sysWeb =
                (SystemWebSectionGroup)WebConfigurationManager.OpenWebConfiguration("/")
                    .GetSectionGroup("system.web");
            configData.Add("debug", sysWeb.Compilation.Debug.ToString());
            configData.Add("targetFramework", sysWeb.Compilation.TargetFramework);
            return View(configData);
        }
    }
}
 

I use the technique I described at the start of the chapter to get the handler for the system.Web section group, 
which defines properties for each of the sections it defines. The Compilation property returns the handler for the 
compilation section, which defines properties for the debug and targetFramework settings. You can see the result 
from reading the compilation settings by starting the application, as shown in Figure 9-10.

Table 9-14.  The Commonly Used Handler Classes to Represent ASP.NET Configuration Sections

Name Description

CacheSection Represents the cache section, which controls content caching. See Chapters 11 and 12.

CompilationSection Represents the compilation section, which controls how the application code is 
compiled. See the following text for details.

CustomErrorsSection Represents the customErrors section, which controls the error handling policy. See  
Pro ASP.NET MVC 5 for details.

GlobalizationSection Represents the globalization section, which controls locale and culture settings for the 
application.

HttpRuntimeSection Represents the httpRuntime section, which defines basic behavior for the application.

SessionStateSection Represents the sessionState section, which I describe in Chapter 10.

SystemWebSectionGroup Represents the system.Web section group, which contains the ASP.NET configuration 
sections.

TraceSection Represents the trace section, which control request tracing. See Chapter 8.



Chapter 9 ■ Configuration

216

Summary
In this chapter, I explained how the ASP.NET configuration system works. I introduced the hierarchy of configuration 
files and the way that the ASP.NET platform merges them to create a unified configuration. I explained how you can 
create simple custom configurations for your application using application settings and connection strings and, with a 
little more effort, create your own configuration sections and collections. In the next chapter, I introduce the ASP.NET 
platform services for state data: application state and session state.

Figure 9-10.  Reading an ASP.NET configuration section



217

Chapter 10

State Data

In this chapter, I describe the two services that the ASP.NET platform provides for creating stateful data: application 
state and session state. These features are easy to use, but they require forethought and caution to avoid serious 
performance penalties. I explain how each feature works and how to sidestep the pitfalls. Table 10-1 summarizes 
this chapter.

Table 10-1.  Chapter Summary

Problem Solution Listing

Store data so that it is available to every 
component in the application.

Use the application state data feature. 1–4

Perform multiple read or write operations 
on application state data.

Use the Lock and UnLock methods defined by the 
HttpApplicationState class.

5, 6

Associate data with requests from the  
same client.

Use the session and session state features. 7–14

Prevent requests in the same session  
from being processed in sequence.

Use the SessionState attribute with the Disabled  
or ReadOnly argument.

15–17

Control how sessions are tracked. Use the cookieless option in the sessionState 
configuration section.

18, 19

Change the storage mechanism  
for sessions.

Use the mode option in the sessionState configuration 
section to specify the state server or a SQL database.

20–21

Preparing the Example Project
For this chapter, I created a new project called StateData, following the same pattern that I have been using in earlier 
chapters. I used the Visual Studio ASP.NET Web Application template, selected the Empty option, and added the 
core MVC references. I’ll be using Bootstrap again in this chapter, so enter the following command into the Package 
Manager Console: 

Install-Package -version 3.0.3 bootstrap



Chapter 10 ■ State Data

218

 Listing 10-1 shows the contents of the HomeController.cs file, which I used to define the default controller for 
the project in the Controllers folder.

Listing 10-1.  The Contents of the HomeController.cs File

using System;
using System.Collections.Generic;
using System.Web.Configuration;
using System.Web.Mvc;
 
namespace StateData.Controllers {
 
    public class HomeController : Controller {
     
        public ActionResult Index() {
            Dictionary<string, object> data = new Dictionary<string, object>();
            data.Add("Placeholder Property", "Placeholder Value");
            return View(data);
        }
    }
}
 

The view model data in the Index action method is a dictionary collection that allows me to pass arbitrary  
key-value pairs to the view. I created the view by right-clicking the action method in the code editor and selecting 
Add View from the pop-up menu. I called the view Index.cshtml, selected the Empty (without model) template,  
and unchecked all of the View Option boxes. You can see the content I defined in the view in Listing 10-2.

Listing 10-2.  The Contents of the Index.cshtml File

@model Dictionary<string, object>
@{ Layout = null; }
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
    <title>State Data</title>
</head>
<body class="container">
    <div class="panel panel-primary">
        <div class="panel-heading">Data</div>
        <table class="table table-striped">
            <thead>
                <tr><th>Property</th><th>Value</th></tr>
            </thead>



Chapter 10 ■ State Data

219

            <tbody>
                @foreach (string key in Model.Keys) {
                    <tr><td>@key</td><td>@Model[key]</td></tr>
                }
            </tbody>
        </table>
    </div>
</body>
</html>
 

The layout generates a table that displays the contents of the collection, as shown in Figure 10-1.

Figure 10-1.  Testing the example application

Application State Data
Application state data is common to all components in the application and is shared between all requests. The main 
purpose of application state is to store data or objects that you need frequently and that are too resource-expensive 
or time-consuming to create for every use. Application state can improve the performance of an application, but it is 
easy to create the opposite effect and slow everything down instead. In this section, I’ll demonstrate how application 
state data is created and used, point out the pitfalls, and show you how to avoid them. Table 10-2 puts application 
state into context.

Table 10-2.  Putting the Appliction State in Context

Question Answer

What is it? Application state data allows small amounts of data to be shared throughout 
an application and is available to every component.

Why should I care? Application state is a convenient way of ensuring that data values are used 
consistently throughout an application, albeit it works well when the data that 
is stored has some specific characteristics.

How is it used by the MVC 
framework?

This feature is not used directly by the MVC framework, but it is available for 
use in application components, including modules, controllers, and views.



Chapter 10 ■ State Data

220

Using Application State
Application state is implemented by the HttpApplicationState class, which is defined in the System.Web 
namespace. An instance of the HttpApplicationState class is available through the HttpContext.Application 
property. The HttpApplicationState class defines the properties and methods shown in Table 10-3.

Table 10-3.  The Members Defined by the HttpApplicationState Class

Name Description

Add(key, value) Adds a value to the state data collection with the specified key

AllKeys Returns the collection keys as a string array

Clear() Removes all the application state data

Count Returns the number of state data items

Lock() Acquires exclusive access to the application state data

Item[index] Returns the item at the specified index

Item[key] Returns the item with the specified key

Remove(key) Removes the value with the specified key

RemoveAt(index) Removes the value at the specified index

UnLock() Releases exclusive access to the application state data

The HttpApplicationState class is a collection of key-value pairs stored in memory and shared across 
the application. The collection can be modified when the application is running, and the methods that 
it defines are thread-safe to prevent multiple updates from colliding when requests are being processed 
concurrently.

It can be hard to find good uses for application state data because of the way the HttpApplicationState class is 
implemented. The sweet spot is data that is resource-intensive or time-consuming to create, but also the data has to 
be the following:

Can be re-created if the application is started (because the data is not persistent)•	

Has a relatively small number of data items, all of which are equally important•	

Is common for all users or requests•	

Needs to be modified during the life of the application•	

If the data doesn’t have all those characteristics, then there are better alternatives available than application state, 
such as session state (see the “Sessions and Session State Data” section), a data cache (see Chapter 11), or just a set 
of static variables. I’ll show you an example of how the application state data feature is commonly used and then 
explain why it isn’t always ideal.



Chapter 10 ■ State Data

221

WHY COVER APPLICATION STATE AT ALL?

You might be wondering why I have included application state at all, given its limitations. There are several 
reasons. First, even though I don’t often come across data that fits every characteristic that suits application state, 
your application may be chock-full of it and the HttpApplicationState class may suit your needs perfectly. One 
of the most interesting aspects of talking with readers of my books is just how diverse web applications can be.

Second, I am describing the sweet spot for which application state is ideal, but you may be willing to compromise 
and exchange a little performance for a lot of convenience. The main advantage of the application state feature is 
that it is simple and easy to use, and that is not to be underestimated, especially when you compare application 
state to the data caching feature I describe in Chapter 11.

Third, I find application state data useful when I am debugging problems in a web application. Tools such as 
request tracing and Glimpse (see Chapter 8) are great for figuring out what has gone wrong in an application, but 
application state is helpful for quickly digging into the detail and prototyping a solution. I use it to short-circuit the 
separation of concerns in an application just to get a working solution before refactoring controllers and views to 
put a permanent fix in place. Like every web application developer, I spend a substantial amount of time tracking 
down and fixing bugs, and I will use any tool that helps me, however imperfect it is.

So, the application state data feature can be useful, even though it is flawed. You should understand its limitations 
but also be aware of where it is helpful and when it represents a reasonable compromise between performance 
and convenience.

I don’t like to work directly with the HttpApplicationState class in controllers and views. Instead, I prefer to 
create a helper class that acts as an intermediary. I’ll explain the reasons for this shortly, but to get started I created an 
Infrastructure folder in the example project and added to it a class file called AppStateHelper.cs, the contents of 
which are shown in Listing 10-3.

Listing 10-3.  The Contents of the AppStateHelper.cs File

using System;
using System.Web;
 
namespace StateData.Infrastructure {
 
    public enum AppStateKeys {
        COUNTER
    };
 
    public static class AppStateHelper {
 
        public static object Get(AppStateKeys key, object defaultValue = null) {
            string keyString = Enum.GetName(typeof(AppStateKeys), key);
            if (HttpContext.Current.Application[keyString] == null
                    && defaultValue != null) {
                HttpContext.Current.Application[keyString] = defaultValue;
            }
            return HttpContext.Current.Application[keyString];
        }
 



Chapter 10 ■ State Data

222

        public static object Set(AppStateKeys key, object value) {
            return HttpContext.Current.Application[Enum.GetName(typeof(AppStateKeys),
                key)] = value;
        }
    }
}
 

The code in this class looks a little gnarly, and that’s one of the reasons why I like to create a helper class. The data 
stored by the HttpApplicationState class can be modified while the application is running, and that means care 
must be taken to check that data values actually exist and have not been deleted by another request. For this reason, 
I have defined the Get method, which accepts a default value that will be used to set the state data when no value is 
found for the specified key, like this:
 
...
if (HttpContext.Current.Application[keyString] == null && defaultValue != null) {
    HttpContext.Current.Application[keyString] = defaultValue;
}
...
 

The argument used for the default value is optional, but its use means I don’t have to check for null values wherever 
I use application state. Notice that the Get and Set methods accept values from the AppStateKeys enumeration as keys, 
rather than strings. The nature of application-wide state data means that its use is diffused across multiple components, 
which presents opportunities for bugs caused by mistyping the key name and maintenance problems when you need to 
locate and change the name of a key. To prevent this from happening, I use an enumeration to constrain and centralize 
the keys and use the static methods of the Enum class to convert from enumeration values to names, like this:
 
...
string keyString = Enum.GetName(typeof(AppStateKeys), key);
...
 

The final reason that I like to use a helper class is that it makes changes easier because all of the references to the 
HttpApplicationState class are contained in one place.

The key that I defined in the AppStateKeys enumeration is called COUNTER, and you can see how I have used it in 
Listing 10-4, which shows changes I made to the Home controller.

Listing 10-4.  Using Application State Data in the HomeController.cs File

using System;
using System.Collections.Generic;
using System.Web.Configuration;
using System.Web.Mvc;
using StateData.Infrastructure;
 
namespace StateData.Controllers {
 
    public class HomeController : Controller {
     
        public ActionResult Index() {
            Dictionary<string, object> data = new Dictionary<string, object>();
            data.Add("Counter", AppStateHelper.Get(AppStateKeys.COUNTER, 0));
            return View(data);
        }
 



Chapter 10 ■ State Data

223

        public ActionResult Increment() {
            int currentValue = (int)AppStateHelper.Get(AppStateKeys.COUNTER, 0);
            AppStateHelper.Set(AppStateKeys.COUNTER, currentValue + 1);
            return RedirectToAction("Index");
        }
    }
}
 

I have changed the Index action method so that it obtains the COUNTER state variable using the helper class and 
adds it to the collection that is rendered by the view. I have added a new action method, called Increment, which gets 
the value of the COUNTER variable and increments it. Once the state data value has been incremented, the client is 
redirected to the Index action, which will display the new value. To test the changes, start the application and request 
the /Home/Index URL followed by /Home/Increment, as shown in Figure 10-2.

Figure 10-2.  Working with application state data

Understanding the Synchronization Effect
This isn’t the most compelling example, but it demonstrates an important aspect (and pitfall) of working with 
application state data. ASP.NET processes requests concurrently, and to ensure that one request isn’t trying to read 
data that another is trying to simultaneously modify, the methods and properties of the HttpApplicationState class 
are synchronized.

The kind of synchronization used in the HttpApplicationState class means that when multiple requests are 
reading application state data, they can all access that data simultaneously, as shown in Figure 10-3.



Chapter 10 ■ State Data

224

All of the requests can read the data without delay, aside from the small overhead required to make sure that only 
readers are accessing the HttpApplicationState class. However, when a request wants to modify the state data, it has 
to wait until all the current read operations have completed and gain exclusive access to the HttpApplicationState 
collection while it makes changes. While the modifications are being performed, no other request can access the state 
data at all; other requests have to wait until the modifications have been completed, as illustrated by Figure 10-4.

Read

Read Operation

Read

Read

Figure 10-3.  Multiple requests reading application state data

Read

Read

ReadRead Modify

Read

Figure 10-4.  The effect of a request modifying application state data

A queue of requests forms each time that one of them wants to modify the data. At the head of the queue is the 
request that wants to make the modification, waiting for the current readers to complete the work. Following those are 
all of the other requests that want to access the state data, which have to wait until the modification is complete before 
they can proceed.

The queuing effect wouldn’t be quite so bad if it applied to individual state data items, but it applies to the entire 
HttpApplicationState object, so a modification for any state data value causes a queue to form, even if the other 
requests want to access a different data item.

The impact of the synchronization on performance depends on the number of concurrent requests that the 
application processes, the ratio of reads to modifications, and the complexity of the operations being performed. 
For applications with simple state data items, a low volume of requests, and occasional modifications, the 
performance impact will be negligible. For an application at the other end of the spectrum, the impact is striking, 
and the application will essentially lock up for each modification. Most applications will fall somewhere between 
these extremes, and you will have to decide whether the convenience of being able to share data between 
components through the HttpApplicationState class is worth the performance penalty.



Chapter 10 ■ State Data

225

Performing Related Operations
A side effect of the way that the application state data collection is synchronized is that caution must be taken if you 
need to read or write multiple related values. The problem is that each read or modification operation is synchronized 
independently and the request goes to the back of the synchronization queue between operations, allowing another 
request to make a change and create an inconsistency in the data.

The Lock method defined by the HttpApplicationState class provides exclusive access to the state data 
collection until the UnLock method is called. To be sure that the state data is read or modified consistently, you must 
use the Lock method whenever multiple related operations are performed and remember to call the UnLock method 
when they are complete. In Listing 10-5, you can see how I have updated the AppStateHelper class so that there 
are two related state data variables and that I used the Lock and UnLock methods to ensure that they are read and 
modified together.

Listing 10-5.  Gaining Exclusive Access to the Application State Data in the AppStateHelper.cs File

using System;
using System.Web;
using System.Collections.Generic;
 
namespace StateData.Infrastructure {
 
    public enum AppStateKeys {
        COUNTER,
        LAST_REQUEST_TIME,
        LAST_REQUEST_URL
    };
 
    public static class AppStateHelper {
 
        public static object Get(AppStateKeys key, object defaultValue = null) {
            string keyString = Enum.GetName(typeof(AppStateKeys), key);
            if (HttpContext.Current.Application[keyString] == null
                    && defaultValue != null) {
                HttpContext.Current.Application[keyString] = defaultValue;
            }
            return HttpContext.Current.Application[keyString];
        }
 
        public static object Set(AppStateKeys key, object value) {
            return HttpContext.Current.Application[Enum.GetName(typeof(AppStateKeys),
                key)] = value;
        }
 
        public static IDictionary<AppStateKeys, object>
            GetMultiple(params AppStateKeys[] keys) {
             
            Dictionary<AppStateKeys, object> results
                = new Dictionary<AppStateKeys, object>();
            HttpApplicationState appState = HttpContext.Current.Application;
            appState.Lock();



Chapter 10 ■ State Data

226

            foreach (AppStateKeys key in keys) {
                string keyString = Enum.GetName(typeof(AppStateKeys), key);
                results.Add(key, appState[keyString]);
            }
            appState.UnLock();
            return results;
        }
 
        public static void SetMultiple(IDictionary<AppStateKeys, object> data) {
            HttpApplicationState appState = HttpContext.Current.Application;
            appState.Lock();
            foreach (AppStateKeys key in data.Keys) {
                string keyString = Enum.GetName(typeof(AppStateKeys), key);
                appState[keyString] = data[key];
            }
            appState.UnLock();
        }
    }
}
 

I have added GetMultiple and SetMultiple methods to the helper class, and these methods operate on arbitrary 
numbers of application state data values, all of which are read or modified following a call to the Lock method, ensuring 
that no other request can read or modify the data until the UnLock method is called. In Listing 10-6, you can see how  
I have updated the Home controller to use the new helper methods.

Listing 10-6.  Performing Related Operations in the HomeController.cs File

using System;
using System.Collections.Generic;
using System.Web.Configuration;
using System.Web.Mvc;
using StateData.Infrastructure;
 
namespace StateData.Controllers {
 
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, object> data = new Dictionary<string, object>();
            data.Add("Counter", AppStateHelper.Get(AppStateKeys.COUNTER, 0));
            IDictionary<AppStateKeys, object> stateData
                = AppStateHelper.GetMultiple(AppStateKeys.LAST_REQUEST_TIME,
                    AppStateKeys.LAST_REQUEST_URL);
            foreach (AppStateKeys key in stateData.Keys) {
                data.Add(Enum.GetName(typeof(AppStateKeys), key), stateData[key]);
            }
            return View(data);
        }
 



Chapter 10 ■ State Data

227

        public ActionResult Increment() {
            int currentValue = (int)AppStateHelper.Get(AppStateKeys.COUNTER, 0);
            AppStateHelper.Set(AppStateKeys.COUNTER, currentValue + 1);
            AppStateHelper.SetMultiple(new Dictionary<AppStateKeys, object> {
                { AppStateKeys.LAST_REQUEST_TIME, HttpContext.Timestamp},
                { AppStateKeys.LAST_REQUEST_URL, Request.RawUrl}
            });
            return RedirectToAction("Index");
        }
    }
}
 

To see the effect, start the application and request the /Home/Increment method, which will generate the output 
shown in Figure 10-5.

Figure 10-5.  Reading and modifying multiple state data properties in a single operation

Using the Lock and UnLock methods ensures that the state data is always consistent, but it does so by forcing 
each operation that uses them to execute in strict sequence. Each time that the Lock method is called, all of the 
other requests that use application state data will form a queue and wait until the UnLock method is called, in effect 
preventing requests from using the application state data concurrently.

WHAT ABOUT VIEW STATE?

You may encounter references to view state and wonder what it is. View state is a feature of Web Forms and tries 
to provide the stateful development experience that is common with desktop application work. View state isn’t 
used in the MVC framework.

View state is part of the way that Web Forms abstracts away the details of HTTP and web browsers and works by 
including hidden form data that describes the state of the user interface presented via HTML, essentially allowing 
HTML elements to be represented by server-side components. The careless use of view state can result in large 
amounts of data being sent between the server and the browser and is one of the reasons that Web Forms has 
gained such a mixed reputation as a web application development platform. The MVC framework is designed to 
work in concert with HTTP requests and doesn’t need a feature like view state.



Chapter 10 ■ State Data

228

Sessions and Session State Data
HTTP is a stateless protocol, but it is often important to be able to identify related requests in order to deliver 
continuity in a web application. To this end, the ASP.NET platform supports sessions, which allow requests from 
the same browser to be identified, and session state, which allows data to be stored for one request in a session and 
retrieved when subsequent requests are being processed.

In this section, I’ll explain how sessions work and how to associate state data with a session. Along the way,  
I’ll point out a performance issue similar to the one that I described for application state data in the previous 
section and explain and demonstrate different ways for storing state data. Table 10-4 puts sessions and session state 
data into context.

Table 10-4.  Putting Sessions and Session State Data in Context

Question Answer

What is it? Sessions identify requests made by the same client and allow the storage 
of data in one request to be associated with subsequent requests.

Why should I care? Almost all applications require some degree of statefulness between 
requests to compensate for the stateless nature of HTTP requests.

How is it used by the MVC framework? This feature is not used directly by the MVC framework, but it is 
available for use in application components, including modules, 
controllers, and views.

Working with Session Data
Session data stores data and makes it available across multiple requests from the same browser. To demonstrate the 
use of session data, I have added a class file called RegistrationController.cs to the Controllers folder and used 
it to define the controller shown in Listing 10-7.

Listing 10-7.  The Contents of the RegistrationController.cs File

using System.Web.Mvc;
 
namespace StateData.Controllers {
    public class RegistrationController : Controller {
 
        public ActionResult Index() {
            return View();
        }
 
        [HttpPost]
        public ActionResult ProcessFirstForm(string name) {
            System.Diagnostics.Debug.WriteLine("Name: {0}", (object)name);
            return View("SecondForm");
        }
        [HttpPost]
        public ActionResult CompleteForm(string country) {
            System.Diagnostics.Debug.WriteLine("Country: {0}", (object)country);
            // in a real application, this is where the call to create the
            // new user account would be



Chapter 10 ■ State Data

229

            ViewBag.Name = "<Unknown>";
            ViewBag.Country = country;
            return View();
        }
    }
}
 

This controller simulates a user registration process that spans two forms and a summary page. To keep the example 
simple, I collect only one item of data in each form and then display both data items in a summary view. To complete the 
example, I added three views to the Views/Registration folder. Listing 10-8 shows the markup for the first view, called 
Index.cshtml, returned by the Index action method and representing the start of the registration process.

Listing 10-8.  The Contents of the Index.cshtml File in the Views/Registration Folder

@{ Layout = null; }
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>First Form</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>body { padding-top: 10px; }</style>
</head>
<body class="container">
    @using (Html.BeginForm("ProcessFirstForm", "Registration")) {
        <div class="form-group">
            <label for="name">Name</label>
            <input class="form-control" name="name" placeholder="Enter name">
        </div>
        <button class="btn btn-primary" type="submit">Submit</button>
    }
</body>
</html>
 

This is a simple form, styled with Bootstrap, which uses an input element to capture the user’s name and post 
the result to the ProcessFirstForm action method in the Registration controller. The ProcessFirstForm action uses 
model binding to extract the name from the request and returns the content shown in Listing 10-9, which shows the 
SecondForm.cshtml file.

Listing 10-9.  The Content of the SecondForm.cshtml File

@{ Layout = null; }
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Second Form</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>body { padding-top: 10px; }</style>
</head>



Chapter 10 ■ State Data

230

<body class="container">
    @using (Html.BeginForm("CompleteForm", "Registration")) {
        <div class="form-group">
            <label for="country">Country</label>
            <input class="form-control" name="country" placeholder="Enter country">
        </div>
        <button class="btn btn-primary" type="submit">Submit</button>
    }
</body>
</html>
 

This form is similar to the first, except that it captures the user’s country and posts the data to the CompleteForm 
action in the Registration controller. The CompleteForm action uses model binding to receive the country and 
renders the CompleteForm.cshtml view in response, which is shown in Listing 10-10.

Listing 10-10.  The Contents of the CompleteForm.cshtml File

@{ Layout = null; }
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Finished</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>body { padding-top: 10px; }</style>
</head>
<body class="container">
    <div class="panel panel-default">
        <div class="panel-heading">Registration Details</div>
        <table class="table table-striped">
            <tr><th>Name</th><td>@ViewBag.Name</td></tr>
            <tr><th>Country</th><td>@ViewBag.Country</td></tr>
        </table>
    </div>
</body>
</html>
 

This view contains a table that displays the name and country provided by the user. Start the application and 
request the /Registration URL to test the application. Enter your name and click the Submit button. Enter your 
country and click the Submit button. The browser will display the summary table, which will be similar to the one 
shown in Figure 10-6.



Chapter 10 ■ State Data

231

Using Session State Data
HTTP requests are stateless, which is a problem when you need to create application functionality that spans multiple 
requests. In my example application, this problem can be seen in Figure 10-6, where there the value provided for the 
Name property isn’t the value entered by the user. This is because the name was sent to the server in an earlier request 
and isn’t included in the request through which the server receives the user’s country. The session state feature will 
allow me to store the user’s name in one request and then retrieve it in a subsequent request.

Session state data is accessed through the HttpContext.Session property, which returns an instance of the 
System.Web.SessionState.HttpSessionState class. This class is responsible for managing the session state data 
and the session itself. I return to session management later in this chapter, but Table 10-5 describes the members of 
the HttpSessionState class that support session state data. Within controllers and views, you can use the Session 
convenience property, without needing to go through the HttpContext object (although this is what is done for you 
behind the scenes).

Figure 10-6.  Displaying a summary of the registration data

Table 10-5.  The HttpSessionState Members That Manage Session State Data

Name Description

Count Returns the number of session state data items.

IsReadyOnly Returns true if the session state data cannot be modified. See the later 
“Understanding the Synchronization Effect” section.

IsSynchronized Returns true if the session state data is synchronized.

Item[index] Returns the state data item at the specified index.

Item[key] Returns the state data item with the specified key.

Clear() Removes all of the state data items.

Remove(key) Removes the state data item with the specified key.

Remove(index) Removes the state data item at the specified index.



Chapter 10 ■ State Data

232

Tip■■   If you use the Session convenience property within a controller, you receive an HttpContextBase object, as 
I explained in Chapter 3. This object has all the same methods and properties as HttpSessionState but can be more 
readily used in unit testing.

Just as with application state, I prefer to use a helper class to act as an intermediary between the application and 
the HttpSessionState instance associated with the request. This allows me to express keys using enumeration values 
so as to avoid typos and make maintenance easier by keeping all of the session state code consolidated in one place. 
Listing 10-11 shows the addition of the SessionStateHelper.cs class file that I added to the Infrastructure folder of 
the example project.

Listing 10-11.  The Contents of the SessionStateHelper.cs File

using System;
using System.Web;
 
namespace StateData.Infrastructure {
 
    public enum SessionStateKeys {
        NAME
    }
 
    public static class SessionStateHelper {
 
        public static object Get(SessionStateKeys key) {
            string keyString = Enum.GetName(typeof(SessionStateKeys), key);
            return HttpContext.Current.Session[keyString];
        }
 
        public static object Set(SessionStateKeys key, object value) {
            string keyString = Enum.GetName(typeof(SessionStateKeys), key);
            return HttpContext.Current.Session[keyString] = value;
        }
    }
}
 

The SessionStateHelper class follows the same basic approach that I used for the application state equivalent 
but is a little simpler because I make no effort to check to see whether values exist or set default values because 
session state data tends to be set as a result of user interactions and, as a consequence, default values are less useful. 
Listing 10-12 shows how I have applied session state data in the Registration controller through the helper class.

Listing 10-12.  Using Session State Data in the RegistrationController.cs File

using System.Web.Mvc;
using StateData.Infrastructure;
 
namespace StateData.Controllers {
    public class RegistrationController : Controller {
 



Chapter 10 ■ State Data

233

        public ActionResult Index() {
            return View();
        }
 
        [HttpPost]
        public ActionResult ProcessFirstForm(string name) {
            SessionStateHelper.Set(SessionStateKeys.NAME, name);
            return View("SecondForm");
        }
 
        [HttpPost]
        public ActionResult CompleteForm(string country) {
            ViewBag.Name = SessionStateHelper.Get(SessionStateKeys.NAME);
            ViewBag.Country = country;
            return View();
        }
    }
}
 

When the user submits their name, the ProcessFirstForm action method stores the value as session state data, 
which is then retrieved by the CompleteForm action method when the user subsequently submits their country in the 
next request. This allows both form values to be used together, even though they were received by the server in two 
separate HTTP requests, as shown in Figure 10-7.

Figure 10-7.  Using session state data

Understanding How Sessions Work
As the previous example demonstrated, using session state data is simple, but there is a lot of work that goes on behind 
the scenes, and understanding it is essential to creating an application that works and performs the way you want. The 
entry point into the sessions feature is a module called SessionStateModule, which handles the AcquireRequestState 
request life-cycle event and is responsible for associating session state data with the request.

The SessionStateModule looks for a session identifier in each request that is received by ASP.NET. The identifier 
is usually a cookie (although this can be changed, as I explain in the “Tracking Sessions Without Cookies” section), 
and it is used to load the state data into an HttpSessionState object that is attached to the HttpContext object 
associated with the request. This process, which is repeated for every request, allows session state to be used across 
requests from the same browser.



Chapter 10 ■ State Data

234

Tip■■   You can receive notifications when sessions are created and destroyed by handling the events defined by the 
SessionStateModule. See Chapter 4 for details.

The HttpSessionState class defines methods and properties that describe and manage the session associated 
with a request, as described in Table 10-6. These are in addition to the state data members that I described in Table 10-5.

Table 10-6.  The HttpSessionState Members That Manage Sessions

Name Description

Abandon() Terminates the current session.

CookieMode Returns a value from the HttpCookieMode enumeration that describes how sessions 
are identified. This corresponds to the value of the mode setting in the sessionState 
configuration section; see the “Tracking Sessions Without Cookies” section.

IsCookieless Returns true if identification is performed without cookies for this request; see the 
“Tracking Sessions Without Cookies” section.

IsNewSession Returns true if the session has been created during the current request.

Mode Returns a value from the SessionStateMode enumeration, which describes how session 
state data is stored; see the “Storing Session Data” section.

SessionID Returns the identifier for the current session.

Timeout Returns the number of minutes that are allowed between requests before a session times 
out. The default is 20. 

Tip■■  T he session state data is stored at the server, and only the session identifier is sent to the browser.

The life of a session starts when a request arrives that doesn’t contain a session cookie. The HttpSessionState.
IsNewSession property is set to true, and a new session identifier is created and assigned to the HttpSessionState.
SessionID property.

What happens next depends on whether the controller stores any session state data. If the controller does store 
state data, then ASP.NET adds a session cookie to the response so that the client will submit it with subsequent 
requests. The session and its state data remain active as long as the browser continues to make requests within the 
limit defined by the Timeout variable or until the Abandon method is called.

The ASP.NET platform does not add the session cookie to the response if no state data has been stored. This 
means that any subsequent requests from the browser won’t have a session cookie and the process begins again. To 
demonstrate the life cycle of a session, I added a class file called LifecycleController.cs to the Controllers folder 
and used it to define the controller shown in Listing 10-13.

Listing 10-13.  The Contents of the LifecycleController.cs File

using System.Web;
using System.Web.Mvc;
using StateData.Infrastructure;
 



Chapter 10 ■ State Data

235

namespace StateData.Controllers {
    public class LifecycleController : Controller {
 
        public ActionResult Index() {
            return View();
        }
 
        [HttpPost]
        public ActionResult Index(bool store = false, bool abandon = false) {
            if (store) {
                SessionStateHelper.Set(SessionStateKeys.NAME, "Adam");
            }
            if (abandon) {
                Session.Abandon();
            }
            return RedirectToAction("Index");
        }
    }
}
 

This controller contains two versions of an action called Index, one of which just renders the default view and the 
other that receives POST requests and manipulates the session or session state based on form values in the request. 
I created the /Views/Lifecycle/Index.cshtml view to display information about the session, which you can see in 
Listing 10-14.

Listing 10-14.  The Contents of the Index.cshtml File in the /Views/Lifecycle Folder

@{ Layout = null; }
 
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Session Lifecycle</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style> body { padding-top: 10px; } </style>
</head>
<body class="container">
    <div class="panel panel-primary">
        <div class="panel-heading">Session</div>
        <table class="table">
            <tr><th>Session ID</th><td>@Session.SessionID</td></tr>
            <tr><th>Is New?</th><td>@Session.IsNewSession</td></tr>
            <tr><th>State Data Count</th><td>@Session.Count</td></tr>
        </table>
    </div>
    @using(Html.BeginForm()) {
        <div class="checkbox">
            <label>
            @Html.CheckBox("store") Store State Data</label>
        </div>                



Chapter 10 ■ State Data

236

        <div class="checkbox">
            <label>
            @Html.CheckBox("abandon") Abandon Session</label>
        </div>
        <button class="btn btn-primary" type="submit">Submit</button>
    }
</body>
</html>
 

The view contains a table that provides some basic information about the session and its state data, as well as a 
form that drives the arguments to the POST version of the Index action method from Listing 10-13. To see the view 
rendered, start the application and navigate to the /Lifecycle/Index URL, as shown in Figure 10-8.

Figure 10-8.  Querying and manipulating sessions

When you first start the application, your browser will send its request to the server without a session cookie. The 
ASP.NET platform will respond by generating a session ID, which you can see in the output from the view, but it won’t 
add the cookie to the response. The IsNew property is true, and a new session ID will be generated each time you 
reload or submit the page (because ASP.NET isn’t adding the cookie to the response, the browser doesn’t send any 
session information back for subsequent requests and the process begins afresh).

Now check the Store State Data box and click the Submit button. When the controller receives this request, it will 
set a state data item, as follows:
 
...
SessionStateHelper.Set(SessionStateKeys.NAME, "Adam");
...
 

The ASP.NET platform responds by adding a session cookie to the response so that subsequent requests from the 
browser will be associated with the saved state data. If you reload or resubmit the browser now, you will see that the 
session ID remains fixed and that the IsNew property is false.



Chapter 10 ■ State Data

237

Caution■■   Browsers that offer tabbed windows generally share cookies between those tabs. That means requests to 
the ASP.NET server from different tabs in the same browser window will be associated with the same session.

Now check the Abandon Session box and submit the form. When the controller receives this request, it will 
forcefully terminate the session, as follows:
 
...
Session.Abandon();
...
 

This marks the session as expired and releases the state data that has been associated with it.

Tip■■  T he state data itself may not be deleted immediately, depending on how it has been stored, but it will no longer 
be associated with subsequent requests from the browser. See the “Storing Session Data” section for details of  
storage options.

When you reload or submit the browser now, you will see something slightly different. The number of state 
data items is zero, but the session ID won’t change for each request, and the IsNew property is shown as true for the 
first request and then false thereafter. This happens because the session cookie isn’t deleted when the session is 
abandoned. The browser is still sending a session cookie to the server with each request, and the ASP.NET platform 
responds by reusing it, rather than generating a new one.

Tip■■   You have to restart the application to return to the point where a new session ID is generated for each  
request. This clears all the in-memory sessions and session data. In the “Storing Session Data” section I explain how 
to persistently store the session data.

Understanding the Synchronization Effect
ASP.NET processes multiple requests concurrently, and modern browsers can make multiple requests concurrently. 
That means it is possible that two requests from the same browser may try to modify the state data simultaneously, 
presenting the risk of data corruption or inconsistent.

To mitigate this risk, the ASP.NET platform does something that sounds sensible but actually causes lots of 
problems and even more confusion: It forces requests that are part of the same session to execute sequentially. Each 
new request is executed only if there are no other requests that are part of the same session currently being processed.

Queuing concurrent requests for the same session made more sense when the feature was implemented because 
it was a rare situation and protecting the integrity of the session state data was seen as being important. These days, 
however, browsers obtain content and data via Ajax, and, as you might expect, the browsers include the session cookie 
as part of these requests, causing Ajax operations to be queued up and processed sequentially, even when ASP.NET is 
perfectly capable of processing them concurrently. Worse, the queuing is applied even when a request doesn’t access 
the session state data; all it takes is that the request contains the session cookie, and the ASP.NET platform will begin 
queuing requests.



Chapter 10 ■ State Data

238

Note■■  T o be clear, only requests that are part of the same session are queued. Requests for different sessions 
are processed concurrently as are those that are not associated with a session. The problem I describe here arises 
only if you make multiple concurrent requests from the same browser, something that generally happens when 
working with Ajax.

Demonstrating the Problem
To demonstrate the problem that session synchronization creates and the effect it has on performance, I added a new 
controller called SyncTest to the example application. Listing 10-15 shows the definition of the controller.

Listing 10-15.  The Contents of the SyncTestController.cs File

using System.Web.Mvc;
 
namespace StateData.Controllers {
    public class SyncTestController : Controller {
 
        public ActionResult Index() {
            return View();
        }
 
        [OutputCache(NoStore = true, Duration = 0)]
        public string GetMessage(int id) {
            return string.Format("Message: {0}", id);
        }
    }
}
 

This controller consists of an Index action method that renders the default view and a GetMessage action method 
that I will target from the browser using Ajax requests. The GetMessage method returns a string that is generated from 
the method argument, which will be set using the built-in MVC framework model binding feature. This controller 
doesn’t do anything useful, other than provide me with a target for Ajax requests.

Tip■■   I have applied the OutputCache attribute to the GetMessage method to prevent the output strings from being 
stored in the ASP.NET content cache. I describe the cache and the effect of the attribute in Chapter 12.

I created a view for the Index action method by right-clicking the method in the Visual Studio code editor and 
selecting Add View from the pop-up menu. I set the name to Index, selected the Empty (without model) option for 
the template, and unchecked all of the view option boxes. When I clicked the Add button, Visual Studio created the 
Views/SyncTest/Index.cshtml file, to which I added the content shown in Listing 10-16.



Chapter 10 ■ State Data

239

Listing 10-16.  The Contents of the Index.cshtml File in the Views/SyncTest Folder

@{ Layout = null;}
 
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>SyncTest</title>
    <script src="http://code.jquery.com/jquery-1.10.1.min.js"></script>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
    <script>
        $(document).ready(function () {
            var start = new Date();
            var counter = 10;
            for (var i = 0; i < 10; i++) {
                $.get("/SyncTest/GetMessage", { id: i }, function (data) {
                    $("#msgTable tbody").append("<tr><td>" + data + "</th></tr>");
                    counter--;
                    if (counter == 0) {
                        var time = new Date().getTime() - start.getTime();
                        $("#results").text("Time (ms): " + time);
                    }
                });
            }
        });
    </script>
</head>
<body class="container">
    <div id="results" class="alert alert-success"></div>
    <table id="msgTable" class="table table-bordered table-striped">
        <tr><th>Messages</th></tr>
    </table>
</body>
</html>
 

For this view, I have added a script element that imports the jQuery library from a content delivery network 
(CDN) and another that uses jQuery to make Ajax requests to the GetMessage action on the SyncTest controller. Ten 
requests are made in total, and the elapsed time is displayed when all of the requests have completed.

Note■■   I am going to treat the jQuery script in this example as a black box that makes Ajax requests and reports on 
them. jQuery is an excellent client-side library, but it isn’t part of the ASP.NET platform and is beyond the scope of this 
book. I describe jQuery in detail in my Pro jQuery 2 book, and I describe client-side development for MVC framework 
applications in my forthcoming Pro ASP.NET MVC Client Development book.

http://code.jquery.com/jquery-1.10.1.min.js%22%3E%3C/script


Chapter 10 ■ State Data

240

To see how this works, start the application and request the /SyncTest/Index URL. The application will render 
the default view for the Index action, which includes the jQuery code that makes the Ajax requests. The view includes 
a table that is populated with messages as each Ajax requests. Reload the page a few times by pressing the F5 key to 
get a sense of how long it takes for all of the requests to complete, as shown in Figure 10-9.

Figure 10-9.  Measuring concurrent Ajax requests

Figure 10-10.  Measuring sequential Ajax requests

On my development desktop, the process takes about 20 to 25 milliseconds. These are short and simple requests 
to a server running on the same (powerful) machine, and I would expect them to be fast.

Leave the application running and navigate to the /Lifecycle/Index URL to see what happens when the Ajax 
requests are made as part of a session. Check the Store State Data box and click the Submit button and then navigate 
back to /SyncTest/Index. Now the Ajax requests will include a session cookie, so the ASP.NET will process them 
sequentially instead of concurrently. You can see the effect in Figure 10-10.



Chapter 10 ■ State Data

241

On my development desktop, the requests now take about 500 milliseconds to complete, which is a striking 
difference given that the only difference is a session cookie. You may see different timings, but the difference should 
be loosely comparable.

Controlling Session State
The solution to this problem is to apply the SessionState attribute to control the use of the session state feature. 
Listing 10-17 shows the application of the attribute to the SyncTest controller.

Listing 10-17.  Applying the SessionState Attribute in the SyncTestController.cs File

using System.Web.Mvc;
using System.Web.SessionState;
 
namespace StateData.Controllers {
 
    [SessionState(SessionStateBehavior.Disabled)]
    public class SyncTestController : Controller {
 
        public ActionResult Index() {
            return View();
        }
 
        [OutputCache(NoStore = true, Duration = 0)]
        public string GetMessage(int id) {
            return string.Format("Message: {0}", id);
        }
    }
}
 

The attribute is applied to the controller class and affects all of the action methods it contains. The attribute 
argument is a value from the SessionStateBehavior enumeration, which is defined in the System.Web.SessionState 
namespace. Table 10-7 describes the range of enumeration values.

Table 10-7.  The SessionStateBehavior Values

Name Description

Default This is the standard ASP.NET behavior, in which the platform checks to see whether the IHttpHandler 
implementation that handles the request implements the IRequiresSessionState interface.  
If so, and the handler for the MVC Framework does implement the interface, then requests within 
a session will be processed sequentially, and all other requests will be processed concurrently.

Disabled Session state is disabled for the controller, and requests that target the controller will be processed 
concurrently, even if they are made with the same session cookie. Attempting to access session 
state will result in an exception.

ReadOnly The action methods in the controller will be able to read, but not modify, the session state data. 
Read-only requests within a session will be processed concurrently, but read-write requests 
will still acquire exclusive access to the state data and be processed sequentially (and delay any 
subsequent read-only requests until they have completed).

Required The action methods in the controller have read-write access to the session state data and 
will cause other requests within the session to queue while they are processed. For the MVC 
framework, this is equivalent to the Default value.



Chapter 10 ■ State Data

242

As you can see from the listing, I specified the Disabled value, which ensures that my Ajax requests will be 
processed concurrently, even when they include a session cookie. However, that also means any attempt to access the 
session data will throw an exception.

Tip■■   I could also have used the Web API technology stack to solve the problem for the example I created to 
demonstrate the problem. Web API is used to create web services and doesn’t use the ASP.NET session state feature. 
Web API doesn’t help, however, when you need to render views to generate fragments of HTML content for which the 
MVC framework and the SessionState should be used.

Configuring Sessions and Session State
The session feature is configured through the sessionState configuration section in the Web.config file (I described 
the ASP.NET configuration feature in Chapter 9). I have been using the default settings so far in this chapter, but a 
number of attributes can be applied to the sessionState element to control how sessions work and how session state 
data is stored. Table 10-8 describes the most useful configuration attributes available.

Table 10-8.  The Most Useful Configuration Attributes for the sessionState Section

Name Description

compressionEnabled When set to true, the session state data is compressed. The default value is false.

cookieless This controls how cookies are used to identify sessions. See the  
“Tracking Sessions Without Cookies” section for details.

cookieName This specifies the name of the cookie used to identify sessions. The default value 
is ASP.NET_<id>.

mode This specifies where session IDs and state data are stored. See the  
“Storing Session Data” section for details.

regenerateExpiredSessionId When set to true (the default value), expired session IDs will be reissued when 
used to make a request.

customProvider This is used to define a custom storage system for session data. See the  
“Using a SQL Database” section later in this chapter for more details.

timeout This specifies the number of minutes after which a session is expired if no 
requests have been received. The default value is 20.

Tracking Sessions Without Cookies
The ASP.NET platform identifies sessions with a cookie, relying on the browser to include it in the requests it sends to 
the server. Although all modern browsers support cookies, there are times when they cannot be used, either because 
cookies are disabled or because the device making the request doesn’t support them (not all requests originate from 
browsers in the real world).

ASP.NET has a fallback technique when cookies cannot be used, which is to include the session ID in the URLs 
that are sent in the response to the client. The cookieless configuration setting determines how the ASP.NET platform 
decides when to use cookies and when to use query strings and can be set to the values shown in Table 10-9.



Chapter 10 ■ State Data

243

Using URLs to track sessions ensures that devices that can’t use cookies can still use an application, but it does so 
by creating ugly URLs. To demonstrate how the URL is used to hold the session ID, I have applied the sessionState 
configuration section to the application-level Web.config file and set cookieless to UseUri, as shown in Listing 10-18.

Listing 10-18.  Setting the Cookie Tracking Mode in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
 
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
    <sessionState cookieless="UseUri" />
  </system.web>
</configuration>
 

I also modified the Index.cshtml file in the Views/Lifecycle folder to display more information about the 
session and include URLs generated through HTML and URL helper methods, as shown in Listing 10-19.

Listing 10-19.  Adding More Session Information to the Index.cshtml File in the Views/Lifecycle File

@{ Layout = null; }
 
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Session Lifecycle</title>

Table 10-9.  The Values for the Cookieless Configuration Setting

Name Description

AutoDetect ASP.NET sends a 302 redirection response to the client that includes a cookie. If the 
cookie is present when the client follows the redirection, then ASP.NET knows that 
cookies are supported and enabled. Otherwise, cookies are assumed to be unavailable, 
and query strings are used instead.

UseCookies This forces ASP.NET to use cookies, even for clients that may not support their use. 
This presents the possibility that the application may not work for all devices. This is 
the default value.

UseDeviceProfile ASP.NET uses the device capabilities feature I described in Chapter 7 to determine 
whether the client supports cookies.

UseUri This forces ASP.NET to use URLs to track sessions, even for clients that support cookies. 
This option ensures the widest possible device support.



Chapter 10 ■ State Data

244

    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
</head>
<body class="container">
    <div class="panel panel-primary">
        <div class="panel-heading">Session</div>
        <table class="table">
            <tr><th>Session ID</th><td>@Session.SessionID</td></tr>
            <tr><th>Is New?</th><td>@Session.IsNewSession</td></tr>
            <tr><th>State Data Count</th><td>@Session.Count</td></tr>
            <tr><td>Mode</td><td>@Session.CookieMode</td></tr>
            <tr><td>Cookieless</td><td>@Session.IsCookieless</td></tr>
            <tr><td>URL</td><td>@Url.Action("Index")</td></tr>
            <tr><td>Link</td><td>@Html.ActionLink("Click Me", "Index")</td></tr>
        </table>
    </div>
    @using (Html.BeginForm()) {
        <div class="checkbox">
            <label>@Html.CheckBox("store") Store State Data</label>
        </div>
        <div class="checkbox">
            <label>@Html.CheckBox("abandon") Abandon Session</label>
        </div>
        <button class="btn btn-primary" type="submit">Submit</button>
    }
</body>
</html>
 

I have added rows to the table that display the value of the HttpSessionState.CookieMode property, which returns 
a value from the HttpCookieMode enumeration, whose values correspond to the configuration options I described in 
Table 10-9. I also included the value of the IsCookieless property, which returns true if ASP.NET uses the URL to track 
the session. Finally, I included the output from the Url.Action and Html.ActionLink helper methods to demonstrate 
how closely integrated session management is. To see the effect of these changes, start the application and navigate to 
the /Lifecycle/Index URL, as shown in Figure 10-11.



Chapter 10 ■ State Data

245

The first thing to notice is the URL displayed in the browser bar, which is as follows: 

http://localhost:64549/(S(ggy3twezcdkl32dtaq22sggb))/Lifecycle/Index

You will see a different URL because the long sequence of digits is the session ID generated by ASP.NET. ASP.NET 
redirects the browser to this URL to begin tracking the session. The CookieMode and IsCookieless properties report 
the configuration of the session feature and the way that the current session is being tracked, and they can be used 
within the application to adapt to different devices (although this is something I have yet to find useful in a real 
application).

Finally, notice that the outgoing URLs that I generated with the helper methods automatically include the session 
ID. Sessions are tightly integrated into the ASP.NET platform, and this extends to the routing system, which is used to 
generate these URLs. This makes it easy to use sessions without cookies, but it does undermine the idea of clear and 
simple URLs that the routing system promotes.

Storing Session Data
By default, details of sessions and session state data are stored in memory within the ASP.NET process. This has the 
benefit of being fast and simple, but it means that sessions are lost when the server is restarted and that sessions 
can scale only to the limit of the system memory. ASP.NET supports two other storage options to help sessions 
scale better and survive application resets, controlled through the mode configuration attribute, which can be set 
to the values shown in Table 10-10. In the sections that follow, I’ll show you how to configure and these alternative 
storage options.

Figure 10-11.  Using the URL to track sessions

http://localhost:64549/(S(ggy3twezcdkl32dtaq22sggb))/Lifecycle/Index


Chapter 10 ■ State Data

246

Using the State Server
The ASP.NET framework comes with a separate server that can be used to store session state, which is used when the 
mode configuration attribute is set to StateServer. The advantage of this approach is that you can host the session 
state server on a dedicated machine, which means that session data won’t be lost when the application is stopped  
or restarted.

The session data is still stored in memory—just the memory of another process, potentially running on another 
server. Performance is not as good as when using the InProc option because the data has to be sent from one process 
to another, potentially across a network. Data stored in the state server is not persistent and will be lost when the state 
server process is stopped.

Tip■■   When using the state server, you must ensure that all of your session data can be serialized. See  
http://msdn.microsoft.com/en-gb/library/vstudio/ms233843.aspx for details of making objects serializable.  
Built-in types, such as int and string, are already serializable and require no special action.

The state server is useful if you have a lot of state data and don’t want to isolate it from the application process. 
The data in the state server will survive the ASP.NET application being restarted, but the data is not truly persistent 
since the state server can itself crash or restart.

The ASP.NET state server is a Windows service that is installed as part of the .NET Framework. To start the server, 
open the Services control panel, and locate and start the ASP.NET State Service, as shown in Figure 10-12.

Table 10-10.  The Values for the mode Configuration Attribute

Name Description

InProc This is the default value, which stores session data within the ASP.NET process.

Off This disables sessions for the entire application. Use with care.

SQLServer This specifies that state data be stored in a database. This value is obsolete with the release 
of the ASP.NET universal database providers. See the “Using a SQL Database” section  
for details.

StateServer This specifies that state data be stored in a dedicated server process. See the  
“Using a SQL Database” section.

Custom This specifies that state data be stored using a custom methodology. This option is used 
with the ASP.NET universal database providers, as described in the “Using a SQL Database” 
section.

http://msdn.microsoft.com/en-gb/library/vstudio/ms233843.aspx


Chapter 10 ■ State Data

247

Tip■■  A  couple of extra configuration steps are required if you want to run the state server on another machine. 
On the machine that will run the service, change the register property HKLM\SYSTEM\CurrentControlSet\Services\
aspnet_state\Parameters\AllowRemoteConnection to 1 and add a firewall rule that allows incoming requests on 
port 42424. You can now start the service and specify the stateConnectionString attribute in your application as 
tcpip=<servername>:42424.

Listing 10-20 shows how I have updated the Web.config file to use the state server by setting the mode and 
stateConnectionString attributes on the sessionState configuration section element.

Listing 10-20.  Configuring the State Server in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
 
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
    <sessionState cookieless="UseCookies" mode="StateServer"
         stateConnectionString="tcpip=localhost:42424" />
  </system.web>
</configuration>
 

I set the mode attribute to StateServer and used the stateConnetionString to specify the name of the server and 
the port on which the state server is running, which is 42424 by default. There won’t be a visible change to the way the 
application operates, but the session data won’t be lost if you restart the application.

Figure 10-12.  Starting the ASP.NET State Service



Chapter 10 ■ State Data

248

Tip■■   You can change the port by editing the registry property HKLM\SYSTEM\CurrentControlSet\Services\
aspnet_state\Parameters\Port.

Using a SQL Database
Using a database to store session data ensures that data isn’t lost when a process is restarted. The way that ASP.NET 
stores session data in a database has changed over the years, which has led to some oddities in the configuration 
settings used in the sessionState configuration section. ASP.NET used to rely on a separate tool that would create a 
database schema for session data, but this has been superseded by a set of classes known as the universal providers, 
which use an Entity Framework feature known as Code First to create a schema when making the initial connection 
to the database—something that is important when using cloud services like Azure that don’t support custom 
command-line tools.

Note■■  T he universal providers are not just for session data; they also store user details for the ASP.NET membership 
API. However, the membership API has been superseded by the Identity API, which I describe in Chapters 13 to 15. It can 
be hard to keep up with Microsoft’s sudden changes in direction.

To get started, I need to create the database that ASP.NET will use to store the session information. I will be 
using the localdb feature, which is a simplified version of SQL Server included in Visual Studio that makes it easy for 
developers to create and manage databases. Select SQL Server Object Explorer from the Visual Studio View menu and 
right-click the SQL Server object in the window that appears. Select Add SQL Server from the pop-up menu, as shown 
in Figure 10-13.

Figure 10-13.  Creating a new database connection

Visual Studio will display the Connect to Server dialog window. Set the server name to be (localdb)\v11.0, select 
the Windows Authentication option, and click the Connect button. A connection to the database will be established 
and shown in the SQL Server Object Explorer window. Expand the new item, right-click Databases, and select Add 
New Database from the pop-up window, as shown in Figure 10-14.



Chapter 10 ■ State Data

249

Set the Database Name option to StateDb, leave the Database Location value unchanged, and click the OK button 
to create the database. The new database will be shown in the Databases section of the SQL connection in the SQL 
Server Object Explorer.

Tip■■  T here is no need to configure the schema for the new database. This will be done automatically the first time a 
connection is made with the universal provider.

The next step is to install the universal providers NuGet package by entering the following command into the 
Visual Studio Package Manager Console: 

Install-Package -version 2.0.0 Microsoft.AspNet.Providers

NuGet installs the package and updates the Web.config file to configure the different databases that ASP.NET 
supports. Most of these are for the now-obsolete membership API, so I removed the unwanted additions, as shown 
in Listing 10-21.

Listing 10-21.  Configuring the Universal Provider for Session Data in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <connectionStrings>
    <add name="StateDb" providerName="System.Data.SqlClient"
         connectionString="Data Source=(localdb)\v11.0;Initial Catalog=StateDb;
             Integrated Security=True" />
  </connectionStrings>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
    <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />

Figure 10-14.  Adding a new database



Chapter 10 ■ State Data

250

    <sessionState mode="Custom" customProvider="DefaultSessionProvider">
      <providers>
        <add name="DefaultSessionProvider" connectionStringName="StateDb"
             type="System.Web.Providers.DefaultSessionStateProvider,
                 System.Web.Providers, Version=2.0.0.0, Culture=neutral,
                     PublicKeyToken=31bf3856ad364e35"  />
      </providers>
    </sessionState>
  </system.web>
</configuration>

Caution■■   I have had to split some of the strings in the listing across multiple lines to make them fit on the page.  
You must ensure that all of the text is on a single line when you edit the Web.config file. If in doubt, download the source 
code for this chapter from www.apress.com.

I defined a connection string called StateDb for the database I created. The changes to the sessionState 
configuration section don’t make a lot of sense, but they are required verbatim to use the universal providers, and you 
should cut and paste them as required, making sure to change the connectionStringName attribute of the providers/
add element to match the connection string that refers to the database you want to use, like this:
 
...
<sessionState mode="Custom" customProvider="DefaultSessionProvider">
  <providers>
    <add name="DefaultSessionProvider" connectionStringName="StateDb"
        type="System.Web.Providers.DefaultSessionStateProvider,
            System.Web.Providers, Version=2.0.0.0, Culture=neutral,
            PublicKeyToken=31bf3856ad364e35"  />
  </providers>
</sessionState>
...
 

To test the database, start the application, request the /Lifecycle/Index URL, and check the option Store State Data.  
A connection to the database will be established when you click the Submit button, and the schema for the database 
will be created so that the session data can be stored. The schema is created only when needed, and subsequent 
connections will reuse the schema.

Summary
In this chapter I described the two state data features that the ASP.NET platform provides: application and session 
state. I demonstrated their use, explained the pitfalls of synchronization, and showed you how they can be used to 
store data across the entire application or across a series of requests from the same client. In the next chapter,  
I describe a flexible—but more complicated—state data feature: the data cache.

http://www.apress.com/


251

Chapter 11

Caching Data

In this chapter, I describe the ASP.NET data caching feature, which is a state data service that actively manages 
the data it contains to limit the amount of memory that it occupies and to ensure that stale data isn’t used by the 
application. Table 11-1 summarizes this chapter.

Preparing the Example Project
For this chapter, I am going to continue using the StateData project I created in Chapter 10. I’ll be using Glimpse 
in this chapter, which provides information about the cache. Enter the following command into the Visual Studio 
Package Manager Console:

Install-Package Glimpse.MVC5

Table 11-1.  Chapter Summary

Problem Solution Listing

Cache data for later use. Use the Cache class, an instance of which can be  
obtained through the HttpContext.Cache property.

1–2

Configure the cache. Use the cache configuration section within the  
caching section group.

3

Set a time at which an item will be ejected  
from the cache.

Use an absolute time expiration. 4

Set an interval after which an item will be 
ejected from the cache if it has not been 
requested.

Use a sliding time expiration. 5

Create a dependency that causes an item to  
be ejected from the cache when it changes.

Use the CacheDependency or  
AggregateCacheDependency class.

6, 7, 10

Create a custom cache dependency. Derive from the CacheDependency class and call  
the NotifyDependencyChanged method to trigger  
cache ejection.

8, 9

Receive a notification when an item has  
been—or is about to be—ejected from the 
cache.

Pass method references to the Cache.Add or  
Cache.Insert method when adding an item  
to the cache.

11, 12



Chapter 11 ■ Caching Data

252

When you hit Enter, NuGet will download and install the Glimpse packages that support the MVC framework 
application. Once the installation is complete, start the application, navigate to the /Glimpse.axd URL, and click the 
Turn Glimpse On button to enable Glimpse diagnostics.

Adding the System.Net.Http Assembly
I’ll be using an example that relies on the System.Net.Http assembly, which isn’t added to MVC projects by default. 
Select Add Reference from the Visual Studio Project menu to open the Reference Manager window. Ensure that the 
Assemblies section is selected on the left side and locate and check the System.Net.Http item, as shown in Figure 11-1.

Figure 11-1.  Adding an assembly to the project

Tip■■   You will need to stop the application before you can add the assembly reference.

Caching Data
The difference between the cache and other state data services, such as application state and session state, is that the 
cache actively manages the data it receives and will remove data items that it judges are no longer required.  
The judgment the cache makes about which data items to remove isn’t arbitrary; as you will learn, you can be specific 
about when a particular item of data is considered useful or not.

The cache stores its data in memory and is useful for data that is resource-intensive or time-consuming to 
generate, that you expect to need again in the future, and, critically, that you can re-create if it is removed from the 
cache or if the application is restarted. In the sections that follow, I’ll show you the different ways in which to store and 
retrieve data in the cache and demonstrate how you can make the cache respond to the needs of your application. 
Table 11-2 puts the data cache feature into context.



Chapter 11 ■ Caching Data

253

AVOIDING THE PREMATURE OPTIMIZATION PROBLEM

Caching is a form of optimization that can improve the performance of an application when used judiciously and 
sparingly—but like all forms of optimization, it can cause more problems than it solves if used carelessly.

Developers have a tendency to apply optimization too early in the project life cycle, in the mistaken belief that 
optimized code is more elegant and professional. In fact, over-eager optimization hides poorly designed code and 
makes it harder to test the application properly.

Don’t optimize code until you know that you have a performance problem that breaks your application 
requirements. Focus on building the functionality of the application first and then, when you are confident that 
everything works properly, start to optimize. Remember that optimizations such as caching change the behavior 
of an application and make it harder to figure out what is happening when there is a problem, so make sure you 
arrange your application so that caching (and other optimizations) can be easily and simply disabled.

Above all, think about why you are optimizing your application. If you papering over the cracks caused by sloppily 
written code and bad design, then a feature such as caching will provide only temporary respite from your 
mistakes. You should only ever optimize a healthy application, not one that needs remedial attention.

Using Basic Caching
The cache is accessed through the HttpContext.Cache property, which returns an instance of the Cache class, defined 
in the System.Web.Caching namespace. The Cache class provides some useful members that make it easy to perform 
basic caching, which I have described in Table 11-3. Later in this chapter, I’ll describe the facilities for creating more 
complex caching policies.

Table 11-2.  Putting the Data Cache in Context

Question Answer

What is it? Application data caching is a form of state data that is actively managed to ensure that stale 
or underused data is removed from use. This feature is also the foundation of the output 
cache, which I describe in Chapter 12.

Why should I care? Caching can improve application performance while ensuring that only current data is used.

How is it used by the 
MVC framework?

The MVC framework does not use application caching directly, but the feature is available 
in application components such as controllers, views, and modules.

Table 11-3.  The Basic Members of the Cache Class

Name Description

Item[key] Gets or sets the data item with the specified key

Count Returns the number of data items stored in the cache

To demonstrate the basic caching technique, I added a controller called Cache to the example application,  
as shown in Listing 11-1.



Chapter 11 ■ Caching Data

254

Listing 11-1.  Using the Cache in the CacheController.cs File

using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
using System.Web.Mvc;
 
namespace StateData.Controllers {
    public class CacheController : Controller {
 
        public ActionResult Index() {
            return View((long?)(HttpContext.Cache["pageLength"]));
        }
 
        [HttpPost]
        public async Task<ActionResult> PopulateCache() {
            HttpResponseMessage result
                = await new HttpClient().GetAsync("http://apress.com");
            HttpContext.Cache["pageLength"] = result.Content.Headers.ContentLength;
            return RedirectToAction("Index");
        }
    }
} 

Tip■■   When I use the data cache in a project, I usually create a helper class like the ones that I used in Chapter 10 for 
the application and state data features. I have not created such a class in this chapter because a lot of the techniques  
I describe are about how to insert data into the cache to control its life cycle, and the handler class just makes all of the 
examples a little more complex because I would have to adjust the controller and the helper class for each example.  
I recommend you use a helper class once you have decided on how you are going to use the cache.

This controller uses the cache to store the length of the content returned from the Apress web site. The Index 
action method retrieves the data item from the cache with the key pageLength and passes it to the view. I cast the 
cached data value to a nullable long (long?) value so that I can differentiate between a cached value of zero and  
the null value that is returned from the cache when a nonexistent key is requested. The PopulateCache method  
uses the HttpClient class from the System.Net.Http namespace to get the contents of the Apress home page and 
cache the numeric value of the ContentLength header before redirecting the client to the Index action to see the effect.

Tip■■  T he data in the example is well-suited to demonstrate caching. It takes time to generate because establishing a 
connection to Apress.com and getting its content can take a few seconds—something that you wouldn’t want to repeat 
for every request. Further, the data has a finite life because Apress often changes its site for new books and promotions, 
meaning that obtaining the data doesn’t give a value that can be used forever. Finally, the data can be created again if 
need be—something that becomes important when the cache starts actively managing its content, as I explain later in 
this chapter.

http://apress.com/
http://apress.com/


Chapter 11 ■ Caching Data

255

I created a view for the Index action by right-clicking the method in the code editor and selecting Add View from 
the pop-up menu. I set View Name to Index, set Template to Empty (without model), and unchecked the View Option 
boxes. When I clicked the Add button, Visual Studio created the Views/Cache/Index.cshtml file, which I edited with 
the content shown in Listing 11-2.

Listing 11-2.  The Contents of the Index.cshtml File in the Views/Cache Folder

@model long?
@{Layout = null;}
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Data Cache</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>body { padding-top: 10px; }</style>
</head>
<body class="container">
    <div class="alert alert-info">
        @if (Model.HasValue) {
            @: Cached Data: @Model bytes
        } else {
            @: No Cached Data
        }
    </div>
    @using (Html.BeginForm("PopulateCache", "Cache")) {
        <button class="btn btn-primary">Populate Cache</button>
    }
</body>
</html>
 

The view contains a message that either displays the cached value or reports that there is no cached data for the 
pageLength key. I used the Html.BeginForm helper method to create a form that will invoke the PopulateCache action 
method when the button element is clicked, making it easy to see the cache in action.

Tip■■  T he individual methods defined by the Cache class are thread-safe to protect against concurrent access, but 
there is no built-in locking feature for performing multiple related operations. See Chapter 10 to understand the contrast 
against the application state and session state features.

To see the effect, start the application and request the /Cache/Index URL. The message will initially show that 
there is no cached data. Click the Populate Cache button; after the request to the Apress web site has completed, the 
length of the response will be shown, as illustrated by Figure 11-2. (You may see a different result because the Apress 
home page changes regularly.)



Chapter 11 ■ Caching Data

256

The reason that I installed Glimpse at the start of the chapter is because it provides useful information about the 
cache. Click the G logo at the right edge of the Glimpse ribbon and select the Cache tab, and you will see the contents 
of the cache and some basic configuration information, as shown in Figure 11-3.

Figure 11-2.  Using the cache

Figure 11-3.  The Glimpse Cache tab

The Cache Items section details the contents of the cache. There are three items shown, two of which were added 
by the ASP.NET platform and one is the pageLength item that is added by the Cache controller.



Chapter 11 ■ Caching Data

257

Configuring the Cache
The Configuration section of the Glimpse Cache tab shows the value of two properties defined by the Cache class that 
relate to the cache configuration, as described in Table 11-4.

Table 11-4.  The Cache Configuration Properties

Name Description

EffectivePercentagePhysicalMemoryLimit Returns the percentage of system memory that can be used to store 
data items before the Cache class starts to remove them. The default 
value is 90, meaning that the cache can occupy 90 percent of the 
available memory.

EffectivePrivateBytesLimit Returns the total number of bytes available for storing data in the 
cache. The default value is 0, meaning that ASP.NET will use its own 
policy for ejecting items when memory is under pressure.

By default, items are removed only when the cache starts to fill up and the limits of the cache size are controlled 
by the values of the properties shown in the table. These values are set in the Web.config file, as shown in Listing 11-3. 
(I have tidied up the Glimpse additions to the Web.config file to make it easier to read.)

Listing 11-3.  Configuring the Cache in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
   
  <configSections>
        <section name="glimpse" type="Glimpse.Core.Configuration.Section,
            Glimpse.Core" />
    </configSections>
   
  <glimpse defaultRuntimePolicy="On" endpointBaseUri="~/Glimpse.axd" />
 
  <connectionStrings>
    <add name="StateDb" providerName="System.Data.SqlClient"
        connectionString="Data Source=(localdb)\v11.0;Initial Catalog=StateDb;
            Integrated Security=True" />
  </connectionStrings>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
    <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
    <sessionState mode="Custom" customProvider="DefaultSessionProvider">
      <providers>
        <add name="DefaultSessionProvider" connectionStringName="StateDb"
           type="System.Web.Providers.DefaultSessionStateProvider,



Chapter 11 ■ Caching Data

258

              System.Web.Providers, Version=2.0.0.0, Culture=neutral,
                   PublicKeyToken=31bf3856ad364e35" />
      </providers>
    </sessionState>
    <caching>
      <cache percentagePhysicalMemoryUsedLimit="10" />
    </caching>
  </system.web>
  <system.webServer>
        <validation validateIntegratedModeConfiguration="false" />
        <modules>
            <add name="Glimpse" type="Glimpse.AspNet.HttpModule, Glimpse.AspNet"
                 preCondition="integratedMode" />
        </modules>
        <handlers>
            <add name="Glimpse" path="glimpse.axd" verb="GET"
                type="Glimpse.AspNet.HttpHandler, Glimpse.AspNet"
                    preCondition="integratedMode" />
        </handlers>
    </system.webServer>
</configuration>
 

Configuring the Cache class is performed through the cache configuration section, which in turn is part of the 
caching configuration group (I explained configuration sections and groups in Chapter 9). In the listing, I set the 
percentage of the memory that the cache can occupy to 10 percent. Table 11-5 lists all the settings available in  
the cache configuration section and describes their effect.

Table 11-5.  The Settings in the cache Configuration Section

Name Description

disableMemoryCollection Sets whether the cache will automatically eject items when the available 
free memory is limited. The default value is false, meaning that items will 
be ejected. Use with caution.

disableExpiration Sets whether items are ejected when they expire. The default value is 
false, meaning that items will expire. See the “Using Advanced Caching” 
section for details of item expiry. Use with caution.

privateBytesLimit Sets the limit (in bytes) of the cache size before items are ejected to free up 
memory. The default value is 0, which tells ASP.NET to use its own policy 
for memory management.

percentagePhysicalMemoryUsedLimit Sets the percentage of the system memory that the cache can occupy 
before items are ejected to free up space. The default value is 90, meaning 
that the cache will occupy up to 90 percent of the available memory.

privateBytesPollTime Sets the interval at which the size of the cache is checked to ensure that it 
is within the limit defined by the privateBytesLimit setting. The default 
value is 00:02:00, which corresponds to two minutes.



Chapter 11 ■ Caching Data

259

Tip■■   Don’t configure the cache until you have a sense of how it is affected by real user loads. Limiting the cache too 
low will cause items to be ejected too aggressively and undermine the optimization effect of the cache, but setting the 
limits too high will cause the cache to grow indefinitely and ultimately disrupt the ASP.NET application’s performance. 
When working on a new application, start with the default settings and use the per-item configuration techniques that  
I describe in the “Using Advanced Caching” section.

The settings that control the size of the cache are most important when using the basic cache features 
demonstrated by Listing 11-1 because data items added via the indexer will be removed only when the cache grows 
too large. The disableExpiration setting affects items that are added to the cache with an expiration policy (which I 
explain in the next section), and setting the configuration to true will prevent items from being ejected when they expire.

Using Advanced Caching
Basic caching can be useful if the data items you are working with are all of equal importance and should be ejected 
from the cache only when the amount of available memory is under pressure. If you want more control over the life of 
your data items or you want to express relative importance so that the cache will eject some before others, then you 
can take advantage of the advanced features that the ASP.NET cache offers, which are available through the Add and 
Insert methods defined by the Cache class. Table 11-6 describes these methods and their overloads.

Table 11-6.  The Cache Methods for Advanced Caching

Name Description

Insert(key, data) Inserts the data into the cache using the specified key. This is equivalent to 
using the Cache indexer, as demonstrated by Listing 11-1.

Insert(key, data, dependency) Inserts the data into the cache using the specified key with an external 
dependency (see the “Using Cache Dependency” section for details).

Insert(key, data, dependency,  
    time, duration)

Like the previous method, but the object will be removed from the cache at 
the DateTime specified by the time argument or after the TimeSpan specified 
by the duration argument.

Insert(key, data, dependency,  
    time, duration, callback)

Like the previous method, but the callback will be used to send a 
notification when the item is removed from the cache. See the “Receiving 
Dependency Notifications” section for details of cache notifications.

Insert(key, data, dependency,  
    time, duration, priority,  
    callback)

Caches the data item with the dependency, time, and duration restrictions 
but also specifies a priority that is used when the cache is ejecting items to 
release memory. The callback is used to send a notification when the item 
is removed from the cache—see the “Receiving Dependency Notifications” 
section for details of cache notifications.

Add(key, data, dependency,  
    time, duration,priority,  
    callback)

Like the previous method, but throws an exception if the cache already 
contains a data object with the same key.

I tend not to use the Add method because I rarely want to receive an exception if there is already a data item with 
the same key, but the range of options available for both the Add and Insert methods allows you to be as specific as you 
need about when an item should be ejected from the cache. I explain each of the constraints in the sections that follow.



Chapter 11 ■ Caching Data

260

Using Absolute Time Expiration
The simplest way to control the life of a cached data item is to specify the time after which the data is invalid. This is 
most useful for data that becomes misleading to the user as it becomes stale, such as stock prices. Listing 11-4 shows 
how I modified the Cache controller so that the example cache item is removed after 30 seconds—this is an extremely 
short period, but it makes it possible to follow the example without having to wait hours to see the effect.

Listing 11-4.  Expiring Cache Items in the CacheController.cs File

using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
using System.Web.Mvc;
using System.Web.Caching;
 
namespace StateData.Controllers {
    public class CacheController : Controller {
 
        public ActionResult Index() {
            return View((long?)(HttpContext.Cache["pageLength"]));
        }
 
        [HttpPost]
        public async Task<ActionResult> PopulateCache() {
            HttpResponseMessage result
                = await new HttpClient().GetAsync("http://apress.com");
            long? data = result.Content.Headers.ContentLength;
            DateTime expiryTime = DateTime.Now.AddSeconds(30);
            HttpContext.Cache.Insert("pageLength", data, null, expiryTime,
                Cache.NoSlidingExpiration);
            return RedirectToAction("Index");
        }
    }
}
 

Cache expiration times are expressed using System.DateTime objects and passed as an argument to the  
Cache.Insert method. There are two time-related options for controlling cache ejection: absolute expiration and 
sliding expiration (which I describe in the next section). When you use one, you must set the other argument to 
a static value defined by the Cache class. In the listing, I am using an absolute time, which means I have to set the 
argument for the sliding expiration like this:
 
...
HttpContext.Cache.Insert("pageLength", data, null, expiryTime,
    Cache.NoSlidingExpiration);
... 

http://apress.com/


Chapter 11 ■ Caching Data

261

Tip■■   You will notice that the dependency argument for the Insert method is null in the listing. This indicates to the 
cache that I have not specified a dependency and that the cached data should be expired only based on the specified 
time or when the cache is short of memory. I show you how to specify dependencies in the “Using Cache Dependencies” 
section later in this chapter.

The NoSlidingExpiration property must be used for the duration argument when specifying an absolute time. 
To see the effect of the cache expiration, start the application, request the /Cache/Index URL, and click the Populate 
Cache button. If you look at the Glimpse Cache tab, you will see the time at which the item will expire. Wait 30 seconds 
and reload the web page by pressing the F5 key, and you will see that the cache is empty.

Using Sliding Time Expirations
Sliding time expirations remove an item from the cache if it hasn’t been accessed for a period of time. This is useful 
when you want the cache to prune items that are not needed by users, while retaining those that remain in demand. 
In Listing 11-5, you can see how I have modified the Cache controller to use a sliding expiration.

Listing 11-5.  Using a Sliding Expiration in the CacheController.cs File

using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
using System.Web.Caching;
using System.Web.Mvc;
 
namespace StateData.Controllers {
    public class CacheController : Controller {
 
        public ActionResult Index() {
            return View((long?)(HttpContext.Cache["pageLength"]));
        }
 
        [HttpPost]
        public async Task<ActionResult> PopulateCache() {
            HttpResponseMessage result
                = await new HttpClient().GetAsync("http://apress.com");
            long? data = result.Content.Headers.ContentLength;
            TimeSpan idleDuration = new TimeSpan(0, 0, 30);
            HttpContext.Cache.Insert("pageLength", data, null,
                Cache.NoAbsoluteExpiration, idleDuration);
            return RedirectToAction("Index");
        }
    }
}
 

http://apress.com/


Chapter 11 ■ Caching Data

262

Sliding expirations are expressed using a TimeSpan, and in the listing, I created a TimeSpan instance for 30 seconds, 
which I passed to the Cache.Insert method. When using a sliding expiration, the time argument (as described in 
Table 11-6) must be set like this:
 
...
HttpContext.Cache.Insert("pageLength", data, null,
    Cache.NoAbsoluteExpiration, idleDuration);
...
 

The NoAbsoluteExpiration property must be used for the time argument when specifying a sliding expiration. 
To see the effect of a sliding expiration, start the application, request the /Cache/Index URL, and click the Populate 
Cache button.

You can see details of the cached item’s expiration on the Glimpse Cache tab. Reload the page by pressing the  
F5 key, and you will see that the expiration time is extended each time the item is read for the cache. Wait 30 seconds 
and then press F5, and you will see that the cache is empty because the item was not accessed before it expired.

Specifying Scavenging Prioritization
Specifying absolute or sliding expirations will cause items to be removed from the cache when they are stale, but it 
is still possible for the cache to fill up. When this happens, the cache will eject items from the cache to manage its 
memory footprint—a process known as scavenging. The scavenging process is usually triggered when the cache is 
being used to store data for every user and there is a sudden spike in application utilization. (If this happens to you, 
then you should consider whether session state data would be more appropriate given that it can be stored in a 
database.)

Not all data is equally important, and you can provide the cache with instructions about the data you want 
ejected first when scavenging begins. The Add method and one of the Insert method overloads take a value from the 
CacheItemPriority enumeration, which defines the values listed in Table 11-7.

Table 11-7.  The Values Defined by the CacheItemPriority Enumeration

Name Description

Low Items given this priority will be removed first.

BelowNormal Items given this priority will be removed if scavenging the Low priority items has not released 
enough memory.

Normal Items given this priority will be removed if scavenging the Low and BelowNormal priority items 
has not released enough memory. This is the default priority for the Insert method overloads 
that don’t take a CacheItemPriority value.

AboveNormal Items given this priority will be removed if scavenging the Low, BelowNormal, and Normal 
priority items has not released enough memory.

High Items given this priority will be removed if scavenging the Low, BelowNormal, Normal, and 
AboveNormal priority items has not released enough memory.

NotRemovable Items with this priority will not be removed during scavenging—although they will be removed 
if absolute or sliding expirations are used.

Default This is equivalent to the Normal value.



Chapter 11 ■ Caching Data

263

I have not included a demonstration of using cache priorities because it is difficult to simulate exhausting the 
system memory—ASP.NET and the .NET Framework both have aggressive memory management techniques that are 
applied to prevent scavenging being necessary.

Caution■■   Use the NotRemovable value with caution, especially if you are using it for data items that are cached 
without an absolute or sliding expiry.

Using Cache Dependencies
Absolute and sliding expiries are suitable for most cached data, but if you need more control over when an item 
expired, you can use a dependency. A dependency creates a relationship between the cached data and another object, 
and the data is removed from the cache when the object changes. There are built-in classes to create dependencies on 
files and other items in the cache. You can also create dependencies on multiple objects and even implement custom 
dependencies. I explain each option in the sections that follow.

Creating a File Dependency
The most basic dependency removes an item from the cache when a file changes. This kind of dependency is useful 
when you are populating the cache with data from a file to improve performance, but caution is required because 
this means storing files that will change on the ASP.NET server—something that is rarely a good idea in a production 
environment and usually impossible in a cloud deployment.

I am going to use a simple text file to demonstrate this kind of dependency. Right-click the StateData item in the 
Solution Explorer and select Add ➤ New Item from the pop-up menu. Select the Text File template from the Visual  
C# ➤ General section, set the name to data.txt, and click the Add button to create the file. Listing 11-6 shows how  
I created a dependency on the data.txt file.

Listing 11-6.  Creating a File Dependency in the CacheController.cs File

using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
using System.Web.Caching;
using System.Web.Mvc;
 
namespace StateData.Controllers {
    public class CacheController : Controller {
 
        public ActionResult Index() {
            return View((long?)(HttpContext.Cache["pageLength"]));
        }
 
        [HttpPost]
        public async Task<ActionResult> PopulateCache() {
            HttpResponseMessage result
                = await new HttpClient().GetAsync("http://apress.com");
            long? data = result.Content.Headers.ContentLength;

http://apress.com/


Chapter 11 ■ Caching Data

264

            CacheDependency dependency = new
                CacheDependency(Request.MapPath("~/data.txt"));
            HttpContext.Cache.Insert("pageLength", data, dependency);
            return RedirectToAction("Index");
        }
    }
} 

Tip■■  T he contents of the data.txt file don’t matter; all that counts is that the file will change, and this change will be 
detected and used to modify the contents of the cache.

The CacheDependency class takes a file path as its constructor argument. I used the HttpRequest.MapPath 
method to translate a local path into an absolute one, which is what the CacheDependency class operates on. I pass the 
CacheDependency object as the dependency argument to the Cache.Insert method. I have used the simplest of the 
CacheDependency constructors that depend on files, but you can see a complete list in Table 11-8.

Table 11-8.  The CacheDependency Constructors That Create Dependencies on Files

Constructor Description

CacheDependency(path) Creates a dependency on a single path, which can be a file or a directory. 
Paths must be absolute. You can use the HttpRequest.MapPath method to 
translate a path relative to the root of the application to an absolute path.

CacheDependency(path[]) Creates a dependency on multiple paths. A change in any of the paths will 
invalidate the associated cached data.

CacheDependency(path,   start) Creates a dependency on the specified path but will invalidate the cached 
data only if the last modification time of the path is later than the start 
argument, which is a DateTime object.

CacheDependency(path[], start) Like the previous constructor, but monitors an array of paths.

The result is that the data will remain in the cache until the data.txt file is modified or the cache scavenges the 
item to free up memory. To see the effect of the file modification, start the application, request the /Cache/Index 
URL, and click the Populate Cache button. If you look at the Glimpse Cache tab, you will see that the cached data has 
no expiry time. Edit the data.txt file, and when you save the changes, you will see that the data is removed from the 
cache when you reload the web page.

Tip■■   You can create a dependency on a SQL database by using the SqlCacheDependency class, which is also in the 
System.Web.Caching namespace. I don’t like this class because it relies on polling the database or reconfiguring the 
database to issue its own notification. I prefer to create custom notifications that work in a way that is consistent with 
the data abstractions I use—which usually means the Entity Framework. See http://msdn.microsoft.com/en-us/
library/system.web.caching.sqlcachedependency.aspx for details of the SqlCacheDependency class if you are not 
deterred by direct dependence on databases, and see the “Creating Custom Dependencies” section later in this chapter 
for details of how to create custom dependencies for your cached data.

http://msdn.microsoft.com/en-us/library/system.web.caching.sqlcachedependency.aspx
http://msdn.microsoft.com/en-us/library/system.web.caching.sqlcachedependency.aspx


Chapter 11 ■ Caching Data

265

Depending on Another Cached Item
The CacheDependency class can also be used to create dependencies on other items in the cache. To demonstrate how 
this works, I have added a new action method to the Cache controller, as shown in Listing 11-7.

Listing 11-7.  Adding a New Action Method to the CacheController.cs File

using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
using System.Web.Caching;
using System.Web.Mvc;
 
namespace StateData.Controllers {
    public class CacheController : Controller {
 
        public ActionResult Index() {
            return View((long?)(HttpContext.Cache["pageLength"]));
        }
 
        [HttpPost]
        public async Task<ActionResult> PopulateCache() {
            HttpResponseMessage result
                = await new HttpClient().GetAsync("http://apress.com");
 
            long? data = result.Content.Headers.ContentLength;
            CacheDependency dependency = new
                CacheDependency(Request.MapPath("~/data.txt"));
            HttpContext.Cache.Insert("pageLength", data, dependency);
 
            DateTime timestamp = DateTime.Now;
            CacheDependency timesStampDependency
                = new CacheDependency(null, new string[] { "pageLength" });
            HttpContext.Cache.Insert("pageTimestamp", timestamp, timesStampDependency);
 
            return RedirectToAction("Index");
        }
    }
}
 

I added a second data item to the cache to record the timestamp for the content length data. When I created the 
CacheDependency object, I used the constructor form that takes an array of path names and an array of cache key names 
to monitor. I set the first argument to null to indicate that I am not interested in paths and specified the pageLength 
key in the second argument. The result is that the new cached item, pageTimestamp, will remain in the cache until the 
pageLength item changes or is ejected from the cache. To see the effect, repeat the steps from the previous example 
and modify the data.txt file. This will invalidate the pageLength item and will, in turn, cause the pageTimestamp item 
to be removed. Table 11-9 shows the CacheDependency constructors that can be used to create dependencies on other 
cached items.

http://apress.com/


Chapter 11 ■ Caching Data

266

Tip■■   You can see from this example that it is possible to create chains of updates and ejections in the cache. This can 
be a useful feature, but don’t get carried away with the complexity of your cache because it is easy to lose track of the 
relationships between data items and start ejecting items unexpectedly.

Creating Custom Dependencies
Custom dependencies allow items to be ejected from the cache when something other than a file or other cached item 
changes, which allows you to tailor the caching behavior to fit the needs of the application.

To demonstrate creating a custom dependency, I am going to create a class that acts as a wrapper around a data 
value and the dependency for that data value. When the data value has been requested a certain number of times, the 
dependency will cause the cache to eject the value from the cache, creating a data object that can be accessed only a 
limited number of times.

This isn’t an especially realistic example because the data item will step closer to expiry each time it is read, 
which is not something you would usually do in an example without paying more attention to why the data is being 
used, but it allows me to keep the example simple and demonstrate a custom dependency without having to set up 
some external source of change events. Listing 11-8 shows the contents of the SelfExpiringData.cs file that I added 
to the Infrastructure folder of the example project.

Listing 11-8.  The Contents of the SelfExpiringData.cs File

using System;
using System.Web.Caching;
 
namespace StateData.Infrastructure {
    public class SelfExpiringData<T> : CacheDependency {
        private T dataValue;
        private int requestCount = 0;
        private int requestLimit;
 
        public T Value {
            get {
                if (requestCount++ >= requestLimit) {
                    NotifyDependencyChanged(this, EventArgs.Empty);
                }

Table 11-9.  The CacheDependency Constructors That Create Dependencies on Other Cached Items

Constructor Description

CacheDependency(path[],  
keys[])

Creates a dependency on multiple paths and multiple cache keys. Use null for 
the first argument if you want to work with just keys.

CacheDependency(path[],  
keys[], start)

Like the previous constructor, but with a DateTime object against which the 
modification date of the paths and the cache keys will be checked.

CacheDependency(path[],  
keys[], start, dependency)

Like the previous constructor, but with a CacheDependency object that, if 
invalidated, will also invalidate the CacheDependency instance created by the 
constructor.



Chapter 11 ■ Caching Data

267

                return dataValue;
            }
        }
 
        public SelfExpiringData(T data, int limit) {
            dataValue = data;
            requestLimit = limit;
        }
    }
}
 

I have created a strongly typed class that accepts a data value and a request limit in its constructor and exposes 
the data value through a property called Value. Each time the getter for the Value property is used, I increment a 
counter and check to see whether the use limit has been reached.

If it has, then I call the NotifyDependencyChanged method, which is inherited from the CacheDependency class, 
which is the base used for custom dependencies. Calling the NotifyDependencyChanged method tells the cache 
that the dependency has changed and ejects the data item from the cache. Listing 11-9 shows how I applied the 
SelfExpiringData class in the Cache controller.

Listing 11-9.  Applying the Self-expiring Cache Dependency in the CacheController.cs File

using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
using System.Web.Caching;
using System.Web.Mvc;
using StateData.Infrastructure;
 
namespace StateData.Controllers {
    public class CacheController : Controller {
 
        public ActionResult Index() {
 
            SelfExpiringData<long?> seData =
                (SelfExpiringData<long?>)HttpContext.Cache["pageLength"];
            return View(seData == null ? null : seData.Value);
        }
 
        [HttpPost]
        public async Task<ActionResult> PopulateCache() {
            HttpResponseMessage result
                = await new HttpClient().GetAsync("http://apress.com");
            long? data = result.Content.Headers.ContentLength;
            SelfExpiringData<long?> seData = new SelfExpiringData<long?>(data, 3);
            HttpContext.Cache.Insert("pageLength", seData, seData);
            return RedirectToAction("Index");
        }
    }
}
 

http://apress.com/


Chapter 11 ■ Caching Data

268

Notice that I use the SelfExpiringData object twice when calling the Cache.Insert method, both as the data 
item and as the dependency. This allows me to track the number of times that the data value is read and to trigger the 
dependency change notification.

To test the custom dependency, start the application, request the /Cache/Index URL, and click the PopulateCache 
button. Now start reloading the browser page by pressing the F5 key—each time you reload the content, the Index action 
in the Cache controller will read the data value, and once the limit has been reached, the data item will be ejected from 
the cache.

Creating Aggregate Dependencies
You can get a sense from the constructors shown in Table 11-9 that it is possible to create chains of dependencies, 
such that one CacheDependency instance will eject its data item when another CacheDependency changes. An 
alternative approach of combining dependencies is to use an aggregate dependency, which allows multiple 
dependencies to be combined without the need to create chains. The cache item associated with an aggregate 
dependency will be removed from the cache when any one of the individual dependencies changes.

The AggregateCacheDependency class manages a collection of dependencies, which is populated through the  
Add method. Listing 11-10 shows the use of this class in the Cache controller.

Listing 11-10.  Creating an Aggregate Dependency in the CacheController.cs File

using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
using System.Web.Caching;
using System.Web.Mvc;
using StateData.Infrastructure;
 
namespace StateData.Controllers {
    public class CacheController : Controller {
 
        public ActionResult Index() {
 
            SelfExpiringData<long?> seData =
                (SelfExpiringData<long?>)HttpContext.Cache["pageLength"];
            return View(seData == null ? null : seData.Value);
        }
 
        [HttpPost]
        public async Task<ActionResult> PopulateCache() {
            HttpResponseMessage result
                = await new HttpClient().GetAsync("http://apress.com");
            long? data = result.Content.Headers.ContentLength;
            SelfExpiringData<long?> seData = new SelfExpiringData<long?>(data, 3);
            CacheDependency fileDep = new CacheDependency(Request.MapPath("~/data.txt"));
            AggregateCacheDependency aggDep = new AggregateCacheDependency();
            aggDep.Add(seData, fileDep);
            HttpContext.Cache.Insert("pageLength", seData, aggDep);
            return RedirectToAction("Index");
        }
    }
}
 

http://apress.com/


Chapter 11 ■ Caching Data

269

I used the AggregateCacheDependency class to combine two CacheDependency instances, one of which is an 
instance of my SelfExpiringData class and the other is a CacheDependency object that monitors the data.txt file 
for changes. The effect is that the data item will be removed from the cache when the data value has been read three 
times or the data.txt file changes, whichever happens first.

Receiving Dependency Notifications
When I created the SelfExpiringData class in the “Creating Custom Dependencies” section, I signaled that the 
dependency had changed by calling the NotifyDependencyChanged method.

The Cache class uses this notification to manage the contents of the class, but you can pass a notification handler 
to the Cache.Insert or Cache.Add method to be notified as well. Listing 11-11 shows how I receive and handle such a 
notification in the Cache controller.

Listing 11-11.  Receiving Dependency Notifications in the CacheController.cs File

using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
using System.Web.Caching;
using System.Web.Mvc;
using StateData.Infrastructure;
 
namespace StateData.Controllers {
    public class CacheController : Controller {
 
        public ActionResult Index() {
 
            SelfExpiringData<long?> seData =
               (SelfExpiringData<long?>)HttpContext.Cache["pageLength"];
            return View(seData == null ? null : seData.Value);
        }
 
        [HttpPost]
        public async Task<ActionResult> PopulateCache() {
            HttpResponseMessage result
                = await new HttpClient().GetAsync("http://apress.com");
            long? data = result.Content.Headers.ContentLength;
            SelfExpiringData<long?> seData = new SelfExpiringData<long?>(data, 3);
            HttpContext.Cache.Insert("pageLength", seData, seData,
                Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
                    CacheItemPriority.Normal, HandleNotification);
            return RedirectToAction("Index");
        }
 
        private void HandleNotification(string key, object data,
                CacheItemRemovedReason reason) {
            System.Diagnostics.Debug.WriteLine("Item {0} removed. ({1})",
                key, Enum.GetName(typeof(CacheItemRemovedReason), reason));
        }
    }
}
 

http://apress.com/


Chapter 11 ■ Caching Data

270

The method that handles the notification has to receive three arguments: the key of the item that the notification 
relates to, the value of the item, and a value from the CacheItemRemovedReason that explains why the item was 
removed. The CacheItemRemovedReason enumeration defines the values shown in Table 11-10.

Table 11-10.  The Values Defined by the CacheItemRemovedReason Enumeration

Name Description

Removed Used when the item has been removed from the cache using the Remove method or when 
an item with the same key is cached with the Insert method.

Expired Used when the item has expired. This value is used for both absolute and sliding 
expirations.

Underused Used when the item has been removed by the cache scavenging process.

DependencyChanged Used when a dependency that the item relies on has changed.

In the listing, I handle the notification by calling the System.Diagnostics.Debug.WriteLine method, which  
will produce a message in the Visual Studio Output window. To see the effect, start the application, navigate to  
/Cache/Item, and click the Populate Cache button. Repeatedly refresh the page using the F5 key until the item is 
removed from the cache and the following message is shown in the Output window:

Item pageLength removed. (DependencyChanged)

Using Notifications to Prevent Cache Ejection
The problem with the notifications in the previous section is that they are sent after the item has been removed 
from the cache. This is useful for tracking when data has expired but doesn’t allow you to adjust the cache behavior. 
Fortunately, there is another kind of notification that is sent before an item is ejected and that can be used to keep the 
item in the cache. This kind of notification can be received only when using this version of the Cache.Insert method:
 
...
Insert(key, data, dependency, time, duration, callback)
...
 

This is the overload that requires expiration values but doesn’t take a cache priority value. In Listing 11-12, you 
can see how I have updated the Cache controller to handle this kind of notification.

Listing 11-12.  Receiving Pre-ejection Cache Notifications in the CacheController.cs File

using System;
using System.Net.Http;
using System.Threading.Tasks;
using System.Web;
using System.Web.Caching;
using System.Web.Mvc;
using StateData.Infrastructure;
 



Chapter 11 ■ Caching Data

271

namespace StateData.Controllers {
    public class CacheController : Controller {
 
        public ActionResult Index() {
            SelfExpiringData<long?> seData
                = (SelfExpiringData<long?>)HttpContext.Cache["pageLength"];
            return View(seData == null ? null : seData.Value);
        }
 
        [HttpPost]
        public async Task<ActionResult> PopulateCache() {
            HttpResponseMessage result
                = await new HttpClient().GetAsync("http://apress.com");
            long? data = result.Content.Headers.ContentLength;
            SelfExpiringData<long?> seData = new SelfExpiringData<long?>(data, 3);
            HttpContext.Cache.Insert("pageLength", seData, seData,
                Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
                    HandleNotification);
            return RedirectToAction("Index");
        }
 
        private void HandleNotification(string key,
            CacheItemUpdateReason reason,
            out object data,
            out CacheDependency dependency,
            out DateTime absoluteExpiry,
            out TimeSpan slidingExpiry) {
 
            System.Diagnostics.Debug.WriteLine("Item {0} removed. ({1})",
                key, Enum.GetName(typeof(CacheItemUpdateReason), reason));
 
            data = dependency
                = new SelfExpiringData<long?>(GetData(false).Result, 3);
 
            slidingExpiry = Cache.NoSlidingExpiration;
            absoluteExpiry = Cache.NoAbsoluteExpiration;
        }
 
        private async Task<long?> GetData(bool awaitCon = true) {
            HttpResponseMessage response = await new
                HttpClient().GetAsync("http://apress.com").ConfigureAwait(awaitCon);
            return response.Content.Headers.ContentLength;
        }
    }
}
 

The handler method for this kind of notification must define the arguments shown in Table 11-11, in the order 
in which they are listed. As the listing shows, many of these arguments are decorated with the out keyword, which 
means that the handler method must assign a value to the argument before the method returns.

http://apress.com/
http://apress.com").ConfigureAwait(awaitCon


Chapter 11 ■ Caching Data

272

Tip■■   You will notice that I call the ConfigureAwait method on the Task returned by the HttpClient.GetAsync 
method. This method prevents a deadlock when the asynchronous task is invoked from a method that has not been 
decorated with the async keyword.

The reason that the item is going to be removed from the cache is expressed using a value from the 
CacheItemUpdateReason enumeration, which defines the values shown in Table 11-12.

Table 11-11.  The Arguments Required for an Update Callback Handler Method

Type Description

string The key for the data item that is about to be ejected from the cache.

CacheItemUpdateReason The reason that the data is about to be ejected. This is a different enumeration than the 
one used for ejection notifications—see the text after the table for details.

object Set this out parameter to the updated data that will be inserted into the cache. Set to 
null to allow the item to be ejected.

CacheDependency Set this out parameter to define the dependency for the updated item. Set to null for 
no dependency.

DateTime Set this out parameter to define the absolute expiry. Use the Cache.
NoAbsoluteExpiration property for no expiration.

TimeSpan Set this out parameter to define the sliding expiration. Use the Cache.
NoSlidingExpiration property for no expiration.

Table 11-12.  The Values Defined by the CacheItemUpdateReason Enumeration

Name Description

Expired Used when the item has expired. This value is used for both absolute and sliding expirations.

DependencyChanged Used when a dependency that the item relies on has changed.

This kind of notification isn’t made when the cache ejects an item because it is scavenging for memory or when the 
Cache.Remove method is used. This is because the notification is an opportunity to update a cached item, something that 
doesn’t make sense when it has been explicitly removed or when the cache is trying to free up memory.

The handler method parameters that are annotated with the out keyword provide the mechanism for updating 
the cache item, and you must assign a value to each of them before the method returns. If you don’t want to update 
the cache item, set the object argument to null; otherwise, set it to the updated value and use the other parameters 
to configure the updated cache item. In the listing, I take the opportunity to update the data and extend its life by 
creating a new cache dependency.

Summary
In this chapter, I described the data caching feature, which actively manages data to improve application performance. 
Like all state data features, the data cache should be used with caution, not least because it can mask design or coding 
flaws in the application, which will then manifest when the application is in production. In the next chapter, I describe 
the output cache, which allows the content generated by views to be cached and reused by the ASP.NET platform.



273

Chapter 12

Caching Content

Caching content is a natural extension of caching data, which I described in the previous chapter. Caching data allows 
you to generate content without having to calculate or load the data that a controller and view requires, which can 
be a good thing—but if the data hasn’t changed, then often the content produced by rendering the view won’t have 
changed either. And yet, the ASP.NET platform has to go through the entire request’s life cycle, which involves the 
MVC framework locating controllers, executing action methods, and rendering views—only to produce the same 
output as for the last request.

The ASP.NET platform provides a content caching feature that controls caching in several ways, including a 
server-side cache that is used to service requests and setting headers in responses to direct the client to cache content. 
In a complex, high-volume web application, reusing content generated for earlier requests can reduce the load on the 
application servers and, when the content is cached by the client, the amount of network capacity required. Table 12-1 
summarizes this chapter.

Table 12-1.  Chapter Summary

Problem Solution Listing

Cache content generated by an action method. Apply the OutputCache attribute to the action 
method or the controller that contains it.

1–4

Cache content at the server. Set the OutputCache.Location property to Server. 5

Cache variations of the content generated  
by an action method.

Use caching variations. 6–9

Define caching policies that can be used 
throughout an application.

Create cache profiles in the Web.config file. 10, 11

Cache the output from a child action. Apply the OutputCache to the child action method. 12–14

Adapt caching policy for individual requests. Control caching using C# statements inside the 
action method.

15

Validate cached content before it is used. Define a validation callback method and use the 
HttpCachePolicy.AddValidationCallback method.

16



Chapter 12 ■ Caching Content

274

Preparing the Example Project
For this chapter, I created a new project called ContentCache, following the pattern I have been using in earlier 
chapters. I used the Visual Studio ASP.NET Web Application template, selected the Empty option, and added the 
core MVC references. I’ll be using Bootstrap in this chapter, so enter the following command into the Package 
Manager Console: 

Install-Package -version 3.0.3 bootstrap

I am going to use simple counters to illustrate when a request is served with cached content, and I will store the 
counters as application state data. As I explained in Chapter 10, I prefer to work with the application state feature 
through a helper class. I created a folder called Infrastructure and added to it a class file called AppStateHelper.cs, 
the contents of which are shown in Listing 12-1.

Listing 12-1.  The Contents of the AppStateHelper.cs File

using System;
using System.Web;
using System.Web.SessionState;
 
namespace ContentCache.Infrastructure {
 
    public enum AppStateKeys {
        INDEX_COUNTER
    }
 
    public static class AppStateHelper {
 
        public static int IncrementAndGet(AppStateKeys key) {
            string keyString = Enum.GetName(typeof(AppStateKeys), key);
            HttpApplicationState state = HttpContext.Current.Application;
            return (int)(state[keyString] = ((int)(state[keyString] ?? 0) + 1));
        }
    }
}
 

The helper class contains a method called IncrementAndGet, which retrieves an int value from the application 
state collection and increments it. If there is no stored value, then one is created.

I added a controller called Home to the project, the definition of which is shown in Listing 12-2.

Listing 12-2.  The Contents of the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 



Chapter 12 ■ Caching Content

275

        public ActionResult Index() {
            Thread.Sleep(1000);
            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
    }
}
 

The controller defines the Index action method, which uses the helper class to increment and retrieve a counter 
called INDEX_COUNTER and passes it to the View method so that it is available as the model data in the view. The action 
method also writes a message to the Visual Studio Output window using the System.Diagnostics.Debug class to 
display the value of the counter.

You will notice that the first statement in the Index action method is a call to the Thread.Sleep method, which 
adds a one-second delay to processing the request. In many of the examples in this chapter, it is important to know 
when the action method is being executed and when cached content is being used, and a delay helps make this 
more obvious.

Caution■■   Do not add deliberate delays to real ASP.NET projects. I have only called the Thread.Sleep method to make 
the effect of caching more obvious.

To create the view, I right-clicked the Index action method in the Visual Studio code editor and selected Add View 
from the pop-up menu. I set View Name to be Index, selected Empty (without model) for the Template option, and 
unchecked the View Options boxes. When I clicked the Add button, Visual Studio created the Views/Home/Index.cshtml 
file, which I edited with the content shown in Listing 12-3.

Listing 12-3.  The Contents of the Index.cshtml File

@model int
@{ Layout = null; }
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Output Caching</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
</head>
<body class="container">
    <div class="alert alert-info">
        The counter value: @Model
    </div>
    @Html.ActionLink("Update", "Index", null, new { @class = "btn btn-primary" })
</body>
</html>
 



Chapter 12 ■ Caching Content

276

The view displays the value of the counter. Start the application, and when you refresh the page or click the 
Update button, the counter is incremented, as shown in Figure 12-1.

Figure 12-1.  Incrementing the counter when refreshing the page

Figure 12-2.  The baseline request displayed in the F12 browser tools

A good way to get insight into the effect of content caching is to use the browser F12 tools, which can capture 
information about the requests sent to the server and the responses they generate. To get a baseline without caching, 
press the F12 key to open the tools window, select the Network tab, and click the green arrow button; then reload the 
browser page. The request I am interested in is the first one in the list, which will be for the /, /Home, or /Home/Index 
URL, depending on what you asked the browser to display, as shown in Figure 12-2.

I have reordered the columns in the F12 window to make it easier to see the details in which I am most interested 
for this chapter, namely, the Result column, which shows the HTTP status code returned from the server, and the 
Taken column, which shows how long the request took.



Chapter 12 ■ Caching Content

277

Tip■■  T racing tools such as Glimpse are not especially helpful when it comes to studying the effect of content caching. 
Glimpse can only report on the request that the server receives and executes, but, as you will learn, a big part of content 
caching is to help the browser avoid making requests at all.

Using the Content Caching Attribute
There are two ways to control content caching. The first—and simplest—is to apply an attribute to action methods or 
controllers. This is the technique I describe in this section. Table 12-2 puts content caching into context.

Table 12-2.  Putting Content Caching by Attribute in Context

Question Answer

What is it? Applying the OutputCache attribute to action methods and controllers sets the 
caching policy, both in the ASP.NET server and in the HTTP clients, such as 
browsers and proxies.

Why should I care? A careful caching policy can significantly reduce the amount of work required to 
service requests, allowing you to increase the throughput of your ASP.NET servers.

How is it used by the  
MVC framework?

The content cache isn’t used directly by the MVC framework, but the feature is 
available for use in controllers and action methods.

Note■■   Later in the chapter, I describe a second approach, which is to configure the caching programmatically from 
within an action method, which allows the action to adapt the way that content is cached based on the current request. 
This is more flexible and provides support for fine-grain control over caching options, but it is more complicated and 
requires careful testing to ensure that everything works as expected. I recommend you start with the attribute in your 
projects because it is simpler to work with and creates a consistent effect. Use the programmatic effect only if you need 
to cache the same content in different ways.

The easiest way to cache content is to apply the OutputCache attribute to a controller or to individual action 
methods. Applying the attribute to the controller allows you to specify a single cache policy for all of the action 
methods it contains, while applying the attribute to individual action methods allows you to vary the caching 
configuration for each one. The OutputCache attribute defines the properties described in Table 12-3.



Chapter 12 ■ Caching Content

278

Controlling the Cache Location
The only sensible place to cache application data is at the server, as demonstrated in Chapter 11. Raw data doesn’t 
become useful outside the server until it is processed and rendered by a view. There is no point sending cached 
application data to the browser, for example, because it doesn’t know anything about how your application transforms 
the data into content that can be displayed to the user.

Caching content, the topic of this chapter, is different because it is the finished product, produced in a format 
that is understood by the browser and that can be displayed to a user. If a browser has a cached copy of the content it 
requires, it doesn’t need to send a request to the server.

The ASP.NET content caching feature includes a server-side memory cache but can also be used to control the 
caching by clients and proxies through the use of HTTP headers.

The OutputCache attribute defines the Location property, which specifies where the output from an action 
method can be cached. Listing 12-4 shows the OuputCache applied to the Home controller.

Listing 12-4.  Adding Content Caching to the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 
        [OutputCache(Duration = 30, Location = OutputCacheLocation.Downstream)]
        public ActionResult Index() {
            Thread.Sleep(1000);

Table 12-3.  The Properties Defined by the OutputCache Attribute

Name Description

CacheProfile This specifies a predefined caching configuration. See the “Creating Cache Profiles” section.

Duration This specifies the number of seconds that the content will be cached for. See the following text 
for an example. A value for this property must be specified.

Location This specifies where the content can be cached. See the “Controlling the Cache Location” section.

NoStore When set to true, the response will set the no-store flag on the Cache-Control HTTP header. 
This asks clients and proxies to avoid storing the content on persistent media, such as disks.

SqlDependency This specifies a dependency between the cached content and a SQL database table.  
This property doesn’t fit well with most MVC framework applications, whose models are 
typically defined through an intermediate layer such as the Entity Framework.

VaryByCustom This specifies a custom value by which different versions of the content will be cached.  
See the “Creating Custom Cache Variations” section.

VaryByHeader This specifies the set of HTTP headers by which different versions of the content 
will be cached. See the “Varying Caching Using Headers” section.

VaryByParam This specifies the set of form and query string values by which different versions of the  
content will be cached. See the “Varying Caching Using Form or Query String Data” section.



Chapter 12 ■ Caching Content

279

            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
    }
} 

Tip■■  T he Duration property must always be set when using the OutputCache attribute. I have set the cache duration 
to 30 seconds, which is too short for most real-life applications but makes it easy to test the examples without having to 
wait too long to see the effect of a change.

The Location property is set to one of the values from the OutputCacheLocation enumeration, which I have 
described in Table 12-4.

Table 12-4.  The Values Defined by the OutputCacheLocation Enumeration

Name Description

Any The Cache-Control header is set to public, meaning that the content is cacheable by 
clients and proxy servers. The content will also be cached using the ASP.NET output 
cache at the server.

Client The Cache-Control header is set to private, meaning that the content is cacheable by 
clients but not proxy servers. The content will also be cached using the ASP.NET output 
cache at the server.

Downstream The Cache-Control header is set to public, meaning that the content is cacheable by 
clients and proxy servers. The content will not be cached using the ASP.NET output cache.

None The Cache-Control header is set to no-cache, meaning that the content is not cacheable 
by clients and proxy servers. The ASP.NET output cache will not be used.

Server The Cache-Control header is set to no-cache, but the content will be cached using the 
ASP.NET output cache.

ServerAndClient The Cache-Control header is set to private, meaning that the content is cacheable by  
clients but not proxy servers. The content will also be cached using the ASP.NET 
output cache.

I specified the Downstream value in the listing, which means that the Cache-Control response HTTP header is 
used tell the browser (and any caching proxies) how to cache the data. The Downstream value doesn’t put the content 
from the Index method in the server-side cache, which means that the action method will be executed if a request is 
made by the browser.

To see the effect of the OutputCache attribute, start the application, make a note of the counter value displayed, 
and then click the Update button. The counter value will not change as long as you clicked the button within  
30 seconds of the original request. Wait 30 seconds and then click the Update button again, and the counter will be 
incremented.



Chapter 12 ■ Caching Content

280

You can see what is happening by using the F12 tools to record the network requests and looking at the response 
headers. The first time that the browser requests the content from the Index action method, ASP.NET adds the 
Cache-Control header to the response, like this:
 
...
Cache-Control:    public, max-age=30
...
 

This tells the browser that it should cache the content for 30 seconds. The public value indicates that intermediaries 
between the client and server, such as proxies, can also cache the data. If you look at the timings on the F12 Network 
tab, you will see results similar to those in Figure 12-3.

Figure 12-3.  Caching content in the browser

Tip■■  I f you don’t see the results shown in the figure, make sure that the Always Refresh from Server option on the 
F12 Network tab isn’t enabled. When enabled, the browser ignores caching instructions and sends requests to the server 
every time.

Internet Explorer shows that the result code for the request is 304, meaning that the content hasn’t changed 
since it was last obtained. This is misleading because it implies that the server sent the 304 code; however, IE 
obtained the content from its local cache. The effect is that clicking the Update button causes the browser to display 
the cached data without making a server request at all.

Tip■■  O ther browsers, including Google Chrome, make it more obvious when content has been retrieved from the 
browser cache. If you want to be sure that Internet Explorer isn’t sending requests to the server, then I recommend  
using Fiddler, which allows you to track all of the network activity on a machine. Fiddler is available without charge from 
www.telerik.com/fiddler.

Having content cached by the browser can improve performance for an individual user, but it has only a modest 
impact on the overall application because each user’s browser has to make an initial request to the server in order to 
get the content to cache.

http://www.telerik.com/fiddler


Chapter 12 ■ Caching Content

281

A further limitation of client caching is that the browser has no insight into how the web application is structured, 
and that means that even the slightest variation in URL can cause the browser to bypass its cached data and make 
a request to the server. In the example application, the URLs /, /Home, and /Home/Index all target the Index action 
method on the Home controller, but the browser has no way of knowing this is the case and will not use cached data from 
one URL for another. For this reason, you should ensure that the URLs that your application generates are consistent, 
which is done most readily by using the URL helper methods to create URLs using an application’s routing policy.

Caching at the Server
The ASP.NET server has to perform a lot of work to generate content for a request, including locating the controller 
and action method and rendering the view to produce the content that will be sent to the client.

Caching the content at the server allows the ASP.NET platform to use content generated by earlier requests 
without having to go through the normal generation process, allowing the work performed for one request to be 
amortized across several. Listing 12-5 shows how I enabled server content caching in the Home controller.

Listing 12-5.  Enabling Server Content Caching in the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 
        [OutputCache(Duration = 30, Location = OutputCacheLocation.Server)]
        public ActionResult Index() {
            Thread.Sleep(1000);
            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
    }
}
 

I have changed the value of the Location property to Server. This disables the browser caching but enables the 
server cache. To see the effect, start the application, start monitoring the network requests with the F12 tools, and then 
click the Refresh button.

If you look at the response headers from the server, you will see that the Cache-Control header is set as follows:
 
...
Cache-Control:  no-cache
...
 

This tells the browser not to cache the content and to request it fresh from the server every time. In the summary 
view, you will see the results illustrated by Figure 12-4.



Chapter 12 ■ Caching Content

282

The 200 status code shows that the content was requested from the server, but the time taken for the request is 
only 16 milliseconds, which indicates that the action method was not executed (because, as you will recall, it contains 
a one-second delay).

Server caching is implemented by a module defined in the OutputCacheModule class from the System.Web.Caching 
namespace. This module listens for the UpdateRequestCache event and uses it to populate its cache with content. 
The module listens for the ResolveRequestCache event and handles it by using its cached content as the response 
and terminates the request life cycle. (I described the life-cycle events in Chapter 3, modules in Chapter 4, and 
terminating the request handling process in Chapter 6.)

The result is that the ASP.NET platform is able to respond to requests engaging the MVC framework, avoiding all 
of the work required to execute an action and render a view—and that’s why the duration shown in Figure 12-4 is so 
much shorter than when the MVC framework produced the content originally.

REAL-WORLD CACHE SETTINGS

In the previous examples, I showed you the Downstream and Server caching modes because they allowed me to 
isolate the way that ASP.NET implements client and server caching. Most real web applications, however, require 
only two caching settings: Any and None.

The Any setting enables caching at the client and the server and offers the best performance. The None setting 
disables all caching options and requires the client to make requests for the content, which in turn are always 
passed on to the controller, action method, and view.

When using the Any setting, make sure you understand what the impact of caching will be on the liveliness of your 
application. If you set the caching period to be too long, then your users will be working with stale data. If you 
set the caching period to be too short, then it is possible that users won’t be requesting the data often enough to 
benefit from the cached content. I recommend disabling caching until you understand the performance profile of 
your application and are in a position to perform solid testing of the impact—both positive, in terms of reduced 
server load, and negative, in terms of liveliness.

The None setting is useful when the content must be generated fresh for every request. Applications that generate 
this content are few and far between, so the first thing to check before you apply the None setting is to make sure 
you are not trying to paper over a design or implementation issue in the application. If you find that you have a 
real need to disable caching, make sure you scale up your server infrastructure so that it can cope with clients 
always making requests to the server.

Figure 12-4.  The effect of server content caching



Chapter 12 ■ Caching Content

283

Managing Data Caching
The previous examples treated all requests as being equal, meaning that all requests for /Home/Index, for example, 
will receive the same cached content. You can also cache multiple versions of content and ASP.NET will match the 
cached content to the request using a caching variation, such as a request header or form data values.

Caching variations allow you to increase the flexibility of your application by generating cached content for a 
range of requests for the same URL, getting the performance increase that caching offers without being tied to a single 
version of the cached content for all requests. I’ll demonstrate the way that you can vary caching in the sections that 
follow. Table 12-5 puts caching variations in context.

Table 12-5.  Putting Caching Variations in Context

Question Answer

What is it? Caching variations allow caching of multiple copies of the content produced by an 
action method. The ASP.NET platform will match a request to the variations and deliver 
the right version of the content.

Why should I care? Caching variations increase the flexibility of the content cache, allowing it to be useful 
in a wider range of applications.

How is it used by the  
MVC framework?

This feature is not used directly by the MVC framework, but it is available for use in 
controllers and action methods.

Varying Caching Using Headers
The simplest form of caching variation is to deliver different versions of cached content based on the headers in the 
HTTP request. To demonstrate how this works, I have modified configuration of the OutputCache applied to the Index 
action method on the Home controller, as shown in Listing 12-6.

Listing 12-6.  Varying Cached Content Based on Headers in the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 
        [OutputCache(Duration = 30, VaryByHeader="user-agent",
            Location = OutputCacheLocation.Any)]
        public ActionResult Index() {
            Thread.Sleep(1000);
            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
    }
}
 



Chapter 12 ■ Caching Content

284

The VaryByHeader property of the OutputCache attribute allows me to specify one or more headers that will be 
used to differentiate between requests. I selected the easiest header to test, which is User-Agent, used to identify the 
browser (and which is used by the browser capabilities feature that I described in Chapter 7).

The ASP.NET platform will execute the Index action method and cache the result for every different user-agent 
header value that it receives. Subsequent requests that contain the same user-agent header within the caching 
direction will receive the appropriate cached version.

You will need two different browsers to be able to test this example, such as Internet Explorer and Google 
Chrome. Start the application and navigate to /Home/Index with both browsers. You will see a different counter value 
for each browser, which reflects the fact that different content has been cached for each user-agent value.

Varying Caching Using Form or Query String Data
A similar approach can be taken to generate and cache content for different permutations of form or query string 
data. Of all the techniques I describe in the chapter, this is the one that requires the most caution and causes the 
most trouble. In most web applications, it is important that data sent from the user is processed and used to update 
the model, advancing the user through the application flows and features. Caching content based on form data 
can mean that user interactions don’t target the action methods in the application, which means that user input is 
lost. That said, this technique can be useful if you have action methods that generate content without updating the 
model—although if this is the case, static HTML can often be a better alternative than caching content generated 
by an action method. Listing 12-7 shows how I have updated the Home controller so that the content generated from 
the Index action method is varied based on user data values.

Listing 12-7.  Varying Cached Content Based on User Data in the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 
        [OutputCache(Duration = 30, VaryByHeader="user-agent",
            VaryByParam="name;city", Location = OutputCacheLocation.Any)]
        public ActionResult Index() {
            Thread.Sleep(1000);
            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
    }
}
 

The VaryByParam property is used to specify one or more query string or form data parameter names. For each 
permutation of values of these parameters, ASP.NET will cache a version of the content generated by the action 
method and use it to satisfy subsequent requests made with the same values.



Chapter 12 ■ Caching Content

285

To see the effect, start the application and navigate to the following URL, which contains query string values for 
the parameters specified for the VaryByParam property: 

/Home/Index?name=Adam&city=London

Open a second instance of the same browser and request the same URL, and you will receive the cached content 
from the previous request. If you specify a different name or city, then a new version of the content will be generated 
and cached.

Tip■■   You can specify an asterisk (the * character) as the value for the VaryByParam property, which will cause 
different versions of the content to be cached for every permutation of every query string or form parameter. Use this with 
caution because it can effectively disable caching in most applications.

In Listing 12-7, I left the VaryByHeader property set, which means that different versions of the content will be 
cached for every permutation of query string values and user agents that ASP.NET receives requests for. This means 
that requesting the URL shown earlier from Internet Explorer and Google Chrome, for example, will generate different 
versions of the cached content, even though the query string values are the same.

Tip■■  T he best way to think about cache variations is to consider the combination of query string and headers as a key. 
The cache will be populated with content for each unique key for which a request is made, and requests for which the 
cache already contain a match for the key will receive that version of the cached content.

Creating Custom Cache Variations
You can create custom caching variations if headers and user data are not enough to differentiate between the 
requests that your application receives. The OutputCache.VaryByCustom property is used to specify an argument that 
is passed to a method in the global application class, which is called when requests are received to generate a cache 
key. Listing 12-8 shows the application of this property in the Home controller.

Listing 12-8.  Using a Custom Cache Variation in the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 
        [OutputCache(Duration = 30,
            VaryByHeader="user-agent",
            VaryByParam="name;city",
            VaryByCustom="mobile",
            Location = OutputCacheLocation.Any)]



Chapter 12 ■ Caching Content

286

        public ActionResult Index() {
            Thread.Sleep(1000);
            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
    }
}
 

I specified the value mobile, which I’ll use to identify mobile devices using the capabilities detection feature that  
I described in Chapter 7. As I explained in Chapter 7, there are some serious hazards when it comes to detecting mobile 
devices because the term is so nebulous and the data quality is so low, but it is good enough for my purposes in this 
chapter. Listing 12-9 shows how I have added support for the mobile cache variation in the global application class.

Listing 12-9.  Adding a Custom Cache Variation to the Global.asax.cs File

using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
 
namespace ContentCache {
 
    public class MvcApplication : System.Web.HttpApplication {
 
        protected void Application_Start() {
            AreaRegistration.RegisterAllAreas();
            RouteConfig.RegisterRoutes(RouteTable.Routes);
        }
 
        public override string GetVaryByCustomString(HttpContext ctx, string custom) {
            if (custom == "mobile") {
                return Request.Browser.IsMobileDevice.ToString();
            } else {
                return base.GetVaryByCustomString(ctx, custom);
            }
        }
    }
}
 

HttpApplication, which is the base for the global application class, defines the GetVaryByCustomString method. 
To add support for a custom cache variation, I override this method and check the value of the custom argument. 
When this argument is mobile, I am being asked to generate my custom cache key from the request, which I do by 
returning the value of the HttpRequest.Browser.IsMobileDevice property. This means I will cause two variations of 
the data in the cache—one for devices that cause the IsMobileDevice property to return true and one for those that 
return false. I call the base implementation of the method for all other values of the custom argument, without which 
the other variation features won’t work.

Tip■■  T o see the effect of the custom variation in Listing 12-9, you can use the device emulation feature that Google 
Chrome provides to simulate requests from a smartphone or tablet. See Chapter 7 for details.



Chapter 12 ■ Caching Content

287

Creating Cache Profiles
As Listing 12-8 shows, the configuration of the OutputCache attribute can be verbose and is required for any action 
method or controller class for which caching is required. To help reduce duplication and to ensure consistent caching 
policies, the ASP.NET platform supports cache profiles. A cache profile is a particular caching configuration defined 
in the Web.config file that can be applied anywhere in the application by name. Listing 12-10 shows how I created a 
cache profile for the example application.

Listing 12-10.  Creating Cache Profiles in the Web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
     <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
    <caching>
      <outputCacheSettings>
        <outputCacheProfiles>
          <add name="cp1" duration="30" location="Any"
               varyByHeader="user-agent" varyByParam="name;city" varyByCustom="mobile"/>
        </outputCacheProfiles>
      </outputCacheSettings>
    </caching>
  </system.web>
</configuration>
 

The outputCacheProfiles collection configuration section is used to define cache profiles and is applied within 
the caching/outputCacheSettings section group. The add element is used to create new profiles, and the attributes 
on the element correspond to the OutputCache properties that I listed in Table 12-3. In Listing 12-10, I defined a cache 
profile called cp1, which reproduces the configuration of the OutputCache attribute from Listing 12-8. Listing 12-11 
shows the application of the profile to the Home controller.

Listing 12-11.  Applying a Cache Profile in the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 
        [OutputCache(CacheProfile="cp1")]
        public ActionResult Index() {
            Thread.Sleep(1000);



Chapter 12 ■ Caching Content

288

            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
    }
}
 

As the listing shows, the individual configuration properties are replaced with CacheProfile, which is set to the 
name of the profile in the Web.config file. Not only does this tidy up the code, but it allows a consistent caching policy 
to be applied throughout the application and makes it easy to change that policy without having to locate and modify 
every instance of the OutputCache attribute.

Caching Child Action Output
The OutputCache attribute can be applied to any action method, including those that are used only as child actions. 
This means you can specify different caching policies when using the MVC framework to compose content from child 
actions. To demonstrate how this works, I have added a child action method to the Home controller and applied the 
OutputCache attribute to it, as shown in Listing 12-12.

Listing 12-12.  Adding a Child Action to the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
using System;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 
        [OutputCache(CacheProfile = "cp1")]
        public ActionResult Index() {
            Thread.Sleep(1000);
            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
 
        [ChildActionOnly]
        [OutputCache(Duration=60)]
        public PartialViewResult GetTime() {
            return PartialView((object)DateTime.Now.ToShortTimeString());
        }
    }
}
 



Chapter 12 ■ Caching Content

289

You can use the Duration, VaryByCustom, and VaryByParam properties only when applying the OutputCache 
attribute to child actions. I have set the Duration property for the child action to be 60 seconds, which is longer than 
the duration for the Index action method. The effect will be that the output from the GetTime child action will be 
stored in the cache, even when cached output from the Index action is refreshed.

Tip■■   Specifying a shorter caching duration for a child action than its parent has no effect, and the caching policy for 
the parent action will be used. This is equivalent to not applying the OutputCache attribute to the child at all.

To create the partial view for the child action, I right-clicked the GetTime method in the code editor and 
selected Add View from the pop-up menu. I set View Name to be GetTime, set Template to Empty (without model), 
and checked the Create as a Partial View option. When I clicked the Add button, Visual Studio created the  
Views/Home/GetTime.cshtml file, which I edited as shown in Listing 12-13.

Listing 12-13.  The Contents of the GetTime.cshtml File

@model string
<div class="alert alert-info">
    The time is: @Model
</div>
 

Finally, I updated the Index.cshtml file to invoke the child action, as shown in Listing 12-14.

Listing 12-14.  Invoking a Child Action in the Index.cshtml File

@model int
@{ Layout = null; }
<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Output Caching</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        body { padding-top: 10px; }
    </style>
</head>
<body class="container">
    <div class="alert alert-info">
        The counter value: @Model
    </div>

@Html.Action("GetTime")
    @Html.ActionLink("Update", "Index", null, new { @class = "btn btn-primary" })
</body>
</html>
 

To see the effect, start the application and periodically click the Update button. The counter value produced by 
the Index action method will update after 30 seconds, but the same time value from the GetTime child action will be 
used for a further 30 seconds.



Chapter 12 ■ Caching Content

290

DONUT AND DONUT-HOLE CACHING

There is a technique called donut caching, which is where the content from an action method is cached by the 
server and supplemented by calls to action methods in every request. The name arises because the part that is 
cached (the donut) entirely surrounds the parts that are not (the donut holes). The donut is the content from the 
action method, and the donut holes are the content from the child actions.

Donut caching can be useful when the skeletal structure of the content is static and needs to be blended 
with fragments of dynamic content. The ASP.NET platform doesn’t support donut caching for MVC 
framework applications, but there is an open source package that provides this functionality.  
See https://github.com/moonpyk/mvcdonutcaching for details.

ASP.NET does support a related technique, called donut-hole caching. If you apply the OutputCache attribute to a 
child action but not its parent, you create an effect where the donut hole (the child action output) is cached while 
the donut (the content from the action method) is not. This is useful for caching relatively static content, such as 
navigation controls, while leaving other content to be generated for each and every request.

Controlling Caching with Code
The strength of the OutputCache attribute is that it allows consistent caching to be applied to the content generated 
by action methods, but this can also be a drawback if you want to dynamically alter the caching policy based on the 
request. In this section, I’ll show you how to take control of the caching using C# statements inside of action methods. 
Table 12-6 puts code-based cache policy in context.

Table 12-6.  Putting Code-Based Caching Policy in Context

Question Answer

What is it? Controlling caching with C# statements allows an action method to tailor the 
cached content on a per-request basis.

Why should I care? Although more complicated than using the attribute, controlling the cache policy 
by code allows you to tightly integrate content caching into a controller.

How is it used by the MVC  
framework?

This feature is not used by the MVC framework but is available for use within  
action methods.

The caching policy for a response is set through the HttpResponse.Cache property, which returns an instance 
of the HttpCachePolicy class from the System.Web namespace. Table 12-7 describes the most useful properties and 
methods defined by the HttpCachePolicy class.

https://github.com/moonpyk/mvcdonutcaching


Chapter 12 ■ Caching Content

291

Note■■   Many of the methods defined by the HttpCachePolicy class relate to the Cache-Control header, which 
used to issue direction to clients and intermediate devices such as proxies. I am not going to detail the Cache-Control 
header here, in part because it is implemented as part of HTTP rather than as an ASP.NET feature and partly because 
there the HTTP specification already contains all the information you could possibly want about the header.  
See www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9 for details.

Dynamically Setting Cache Policy
The benefit of working with the HttpCachePolicy class is that you can inspect the request from within the action 
method and adapt the caching policy dynamically. Listing 12-15 shows how I updated the Home controller to use  
the HttpCachePolicy class to change the caching policy based on the URL that was used to target the Index  
action method.

Table 12-7.  The Members Defined by the HttpCachePolicy

Name Description

AddValidationCallback(handler, data) Specifies a callback handler that will validate that the cached 
content is still valid. See the “Validating Cached Content” section.

SetCacheability(policy) Sets the Cache-Control response header using one of the 
values defined by the HttpCacheability enumeration. See the 
“Dynamically Setting Cache Policy” section.

SetExpires(time) Sets the Expires response header using a DateTime value.

SetLastModified(time) Sets the Last-Modified header using a DateTime value.

SetMaxAge(period) Sets the max-age flag of the Cache-Control response header using a 
TimeSpan.

SetNoServerCaching() Disables server caching for the current response.

SetNoStore() Adds the no-store flag to the Cache-Control response header.

SetNoTransforms() Adds the no-transform flag to the Cache-Control response header.

SetProxyMaxAge(period) Sets the s-maxage flag of the Cache-Control response header using 
a TimeSpan.

SetVaryByCustom(name) Sets the argument that will be passed to the global application class 
GetVaryByCustomString method. See the “Creating Custom Cache 
Variation” section.

VaryByHeaders Specifies the headers that will be used to vary the cached content. 
See the “Varying Caching Using Headers” section.

VaryByParams Specifies the query string or form parameters that will be used to 
vary the cache content. See the “Varying Caching Using Form or 
Query String Data” section.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9


Chapter 12 ■ Caching Content

292

Listing 12-15.  Setting Cache Policy in the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
using System;
using System.Web;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 
        public ActionResult Index() {
            if (Request.RawUrl == "/Home/Index") {
                Response.Cache.SetNoServerCaching();
                Response.Cache.SetCacheability(HttpCacheability.NoCache);
            } else {
                Response.Cache.SetExpires(DateTime.Now.AddSeconds(30));
                Response.Cache.SetCacheability(HttpCacheability.Public);
            }
            Thread.Sleep(1000);
            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
 
        [ChildActionOnly]
        [OutputCache(Duration = 60)]
        public PartialViewResult GetTime() {
            return PartialView((object)DateTime.Now.ToShortTimeString());
        }
    }
}

Tip■■   Be careful of using the Update button for this example because the URL it requests will always be /.  
When checking to see whether the /Home/Index URL is cached, use the F5 key to refresh the browser instead.

I use the HttpRequest.RawUrl property to set the caching policy for the content generated by the Index action 
method. If the action method has been targeted by the /Home/Index URL, then I disable server caching and use the 
SetCacheability method to disable browser caching. The argument to the SetCacheability method is a value from 
the HttpCacheability enumeration, which defines the values shown in Table 12-8. If the action method has been 
targeted by any other URL, then I set the cache duration to 30 seconds and use the SetCacheability method to 
enable browser caching.



Chapter 12 ■ Caching Content

293

To test the effect of the changes I made to the Home controller, start the application and request the root URL for 
the application (/). When you click the Update button, you will see that the content is cached for 30 seconds. Navigate 
to the /Home/Index URL and use the F5 key to refresh the page, and you will see that the browser requests the content 
from the server every time—and if you look at the Visual Studio Output window, you will see that the request is passed 
to the Home controller for every request.

Validating Cached Content
The HttpCachePolicy.AddValidationCallback method takes a method that is called to validate whether a cached 
data item is valid before it is returned to the client. This allows for custom management of the content cache, beyond 
the duration and location-based configuration. Listing 12-16 shows how I have added a validation callback to the 
Home controller.

Listing 12-16.  Using a Cache Validation Callback to the HomeController.cs File

using System.Diagnostics;
using System.Threading;
using System.Web.Mvc;
using System.Web.UI;
using ContentCache.Infrastructure;
using System;
using System.Web;
 
namespace ContentCache.Controllers {
    public class HomeController : Controller {
 

Table 12-8.  The Values Defined by the HttpCacheability Enumeration

Name Description

NoCache This sets the Cache-Control header to no-cache, which prevents content from being 
cached by clients and proxies. This is equivalent to setting the OutputCache.Location 
property to None.

Private The Cache-Control header is set to private, meaning that the content is cacheable by 
clients but not proxy servers. This is equivalent to setting the OutputCache.Location 
property to Client.

Public The Cache-Control header is set to public, meaning that the content is cacheable 
by clients and proxy servers. This is equivalent to setting the OutputCache.Location 
property to Downstream.

Server The Cache-Control header is set to no-cache, but the content will be cached using the 
ASP.NET output cache. This is equivalent to setting the OutputCache.Location property 
to Downstream.

ServerAndNoCache This combines the Server and NoCache settings.

ServerAndPrivate This combines the Server and Private settings.



Chapter 12 ■ Caching Content

294

        public ActionResult Index() {
 
            Response.Cache.SetExpires(DateTime.Now.AddSeconds(30));
            Response.Cache.SetCacheability(HttpCacheability.Server);
            Response.Cache.AddValidationCallback(CheckCachedItem, Request.UserAgent);
 
            Thread.Sleep(1000);
            int counterValue = AppStateHelper.IncrementAndGet(
                AppStateKeys.INDEX_COUNTER);
            Debug.WriteLine(string.Format("INDEX_COUNTER: {0}", counterValue));
            return View(counterValue);
        }
 
        [ChildActionOnly]
        [OutputCache(Duration = 60)]
        public PartialViewResult GetTime() {
            return PartialView((object)DateTime.Now.ToShortTimeString());
        }
 
        public void CheckCachedItem(HttpContext ctx, object data,
            ref HttpValidationStatus status) {
 
            status = data.ToString() == ctx.Request.UserAgent ?
                HttpValidationStatus.Valid : HttpValidationStatus.Invalid;
            Debug.WriteLine("Cache Status: " + status);
        }
    }
}
 

The AddValidationCallback method takes two arguments. The first is the method that will be called to validate 
the cached content, and the second is an object that can be used to identify the cached content in order to decide 
whether it is valid. In the example, I specified the CheckCachedItem method and selected the user-agent string for the 
object argument.

The callback method must take a specific set of arguments: an HttpContext object, the object argument from the call 
to the AddValidationCallback method, and an HttpValidationStatus value, which is marked with the ref keyword.  
The job of the callback method is to use the context to examine the request and set the value of the HttpValidationStatus 
argument in order to tell the ASP.NET platform whether the content is still valid. Table 12-9 shows the set of values defined 
by the HttpValidatonStatus enumeration. In the listing, I invalidate the cached content if the user-agent string doesn’t 
match the one used when the content was cached.

Table 12-9.  The Values Defined by the HttpValidationStatus Enumeration

Name Description

Valid The cached content is still valid.

Invalid The content is no longer valid and should be 
ejected from the cache. The request is passed 
to the action method.

IgnoreThisRequest The request is passed to the action method, 
but the value in the cache is not ejected.



Chapter 12 ■ Caching Content

295

Tip■■   You must set an expiry date and ensure that the content is cached at the server when using the  
AddValidationCallback method, just as I did in the listing. If you do not do this, then the callback method won’t 
be used because the content won’t be cached in the right place.

Summary
In this chapter, I described the content cache, which can be used to enable server caching of content produced by 
action methods and set the response headers used by HTTP clients such as browsers and proxies. I demonstrated 
how you can use an attribute or C# statements to control caching and showed you how to manage the cache and 
its contents. In the next chapter, I show you how to set up and use the ASP.NET Identity system, which is used to 
manage user accounts.



297

Chapter 13

Getting Started with Identity

Identity is a new API from Microsoft to manage users in ASP.NET applications. The mainstay for user management 
in recent years has been ASP.NET Membership, which has suffered from design choices that were reasonable when 
it was introduced in 2005 but that have aged badly. The biggest limitation is that the schema used to store the data 
worked only with SQL Server and was difficult to extend without re-implementing a lot of provider classes. The 
schema itself was overly complex, which made it harder to implement changes than it should have been.

Microsoft made a couple of attempts to improve Membership prior to releasing Identity. The first was known as 
simple membership, which reduced the complexity of the schema and made it easier to customize user data but still 
needed a relational storage model. The second attempt was the ASP.NET universal providers, which I used in Chapter 10  
when I set up SQL Server storage for session data. The advantage of the universal providers is that they use the 
Entity Framework Code First feature to automatically create the database schema, which made it possible to create 
databases where access to schema management tools wasn’t possible, such as the Azure cloud service. But even with 
the improvements, the fundamental issues of depending on relational data and difficult customizations remained.

To address both problems and to provide a more modern user management platform, Microsoft has replaced 
Membership with Identity. As you’ll learn in this chapter and Chapters 14 and 15, ASP.NET Identity is flexible and 
extensible, but it is immature, and features that you might take for granted in a more mature system can require a 
surprising amount of work.

Microsoft has over-compensated for the inflexibility of Membership and made Identity so open and so adaptable 
that it can be used in just about any way—just as long as you have the time and energy to implement what you require.

In this chapter, I demonstrate the process of setting up ASP.NET Identity and creating a simple user 
administration tool that manages individual user accounts that are stored in a database.

ASP.NET Identity supports other kinds of user accounts, such as those stored using Active Directory, but I don’t 
describe them since they are not used that often outside corporations (where Active Directive implementations tend 
to be so convoluted that it would be difficult for me to provide useful general examples).

In Chapter 14, I show you how to perform authentication and authorization using those user accounts, and in 
Chapter 15, I show you how to move beyond the basics and apply some advanced techniques. Table 13-1 summarizes 
this chapter.



Chapter 13 ■ Getting Started with Identity

298

Preparing the Example Project
I created a project called Users for this chapter, following the same steps I have used throughout this book. I selected 
the Empty template and checked the option to add the folders and references required for an MVC application. I will 
be using Bootstrap to style the views in this chapter, so enter the following command into the Visual Studio Package 
Manager Console and press Enter to download and install the NuGet package: 

Install-Package -version 3.0.3 bootstrap 

I created a Home controller to act as the focal point for the examples in this chapter. The definition of the controller 
is shown in Listing 13-1. I’ll be using this controller to describe details of user accounts and data, and the Index action 
method passes a dictionary of values to the default view via the View method.

Listing 13-1.  The Contents of the HomeController.cs File

using System.Web.Mvc;
using System.Collections.Generic;
 
namespace Users.Controllers {
 
    public class HomeController : Controller {
 
        public ActionResult Index() {
            Dictionary<string, object> data
                = new Dictionary<string, object>();
            data.Add("Placeholder", "Placeholder");
            return View(data);
        }
    }
}
 

Table 13-1.  Chapter Summary

Problem Solution Listing

Install ASP.NET Identity. Add the NuGet packages and define a connection string  
and an OWIN start class in the Web.config file.

1–4

Prepare to use ASP.NET Identity. Create classes that represent the user, the user manager,  
the database context, and the OWIN start class.

5–8

Enumerate user accounts. Use the Users property defined by the user manager class. 9, 10

Create user accounts. Use the CreateAsync method defined by the user manager class. 11–13

Enforce a password policy. Set the PasswordValidator property defined by the user manager 
class, either using the built-in PasswordValidator class or using a 
custom derivation.

14–16

Validate new user accounts. Set the UserValidator property defined by the user manager class, 
either using the built-in UserValidator class or using a custom 
derivation.

17–19

Delete user accounts. Use the DeleteAsync method defined by the user manager class. 20–22

Modify user accounts. Use the UpdateAsync method defined by the user manager class. 23–24



Chapter 13 ■ Getting Started with Identity

299

I created a view by right-clicking the Index action method and selecting Add View from the pop-up menu. I set 
View Name to Index and set Template to Empty (without model). Unlike the examples in previous chapters, I want 
to use a common layout for this chapter, so I checked the Use a Layout Page option. When I clicked the Add button, 
Visual Studio created the Views/Shared/_Layout.cshtml and Views/Home/Index.cshtml files. Listing 13-2 shows the 
contents of the _Layout.cshtml file.

Listing 13-2.  The Contents of the _Layout.cshtml File

<!DOCTYPE html>
<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>@ViewBag.Title</title>
    <link href="~/Content/bootstrap.min.css" rel="stylesheet" />
    <link href="~/Content/bootstrap-theme.min.css" rel="stylesheet" />
    <style>
        .container {  padding-top: 10px; }
        .validation-summary-errors { color: #f00; }
    </style>
</head>
<body class="container">
    <div class="container">
        @RenderBody()
    </div>
</body>
</html>
 

Listing 13-3 shows the contents of the Index.cshtml file.

Listing 13-3.  The Contents of the Index.cshtml File

@{
    ViewBag.Title = "Index";
}
 
<div class="panel panel-primary">
    <div class="panel-heading">User Details</div>
    <table class="table table-striped">
        @foreach (string key in Model.Keys) {
            <tr>
                <th>@key</th>
                <td>@Model[key]</td>
            </tr>
        }
    </table>
</div>
 

To test that the example application is working, select Start Debugging from the Visual Studio Debug menu and 
navigate to the /Home/Index URL. You should see the result illustrated by Figure 13-1.



Chapter 13 ■ Getting Started with Identity

300

Setting Up ASP.NET Identity
For most ASP.NET developers, Identity will be the first exposure to the Open Web Interface for .NET (OWIN). OWIN is 
an abstraction layer that isolates a web application from the environment that hosts it. The idea is that the abstraction 
will allow for greater innovation in the ASP.NET technology stack, more flexibility in the environments that can host 
ASP.NET applications, and a lighter-weight server infrastructure.

OWIN is an open standard (which you can read at http://owin.org/spec/owin-1.0.0.html). Microsoft has  
created Project Katana, its implementation of the OWIN standard and a set of components that provide the 
functionality that web applications require. The attraction to Microsoft is that OWIN/Katana isolates the ASP.NET 
technology stack from the rest of the .NET Framework, which allows a greater rate of change.

OWIN developers select the services that they require for their application, rather than consuming an entire 
platform as happens now with ASP.NET. Individual services—known as middleware in the OWIN terminology—can 
be developed at different rates, and developers will be able to choose between providers for different services, rather 
than being tied to a Microsoft implementation.

There is a lot to like about the direction that OWIN and Katana are heading in, but it is in the early days, and it will 
be some time before it becomes a complete platform for ASP.NET applications. As I write this, it is possible to build Web 
API and SignalR applications without needing the System.Web namespace or IIS to process requests, but that’s about 
all. The MVC framework requires the standard ASP.NET platform and will continue to do so for some time to come.

The ASP.NET platform and IIS are not going away. Microsoft has been clear that it sees one of the most  
attractive aspects of OWIN as allowing developers more flexibility in which middleware components are hosted by 
IIS, and Project Katana already has support for the System.Web namespaces. OWIN and Katana are not the end of 
ASP.NET—rather, they represent an evolution where Microsoft allows developers more flexibility in how ASP.NET 
applications are assembled and executed.

Tip■■  I dentity is the first major ASP.NET component to be delivered as OWIN middleware, but it won’t be the last.  
Microsoft has made sure that the latest versions of Web API and SignalR don’t depend on the System.Web namespaces, 
and that means that any component intended for use across the ASP.NET family of technologies has to be delivered  
via OWIN. I get into more detail about OWIN in my Expert ASP.NET Web API 2 for MVC Developers book, which will be 
published by Apress in 2014.

OWIN and Katana won’t have a major impact on MVC framework developers for some time, but changes are 
already taking effect—and one of these is that ASP.NET Identity is implemented as an OWIN middleware component. 
This isn’t ideal because it means that MVC framework applications have to mix OWIN and traditional ASP.NET 

Figure 13-1.  Testing the example application 

http://owin.org/spec/owin-1.0.0.html


Chapter 13 ■ Getting Started with Identity

301

platform techniques to use Identity, but it isn’t too burdensome once you understand the basics and know how to get 
OWIN set up, which I demonstrate in the sections that follow.

Creating the ASP.NET Identity Database
ASP.NET Identity isn’t tied to a SQL Server schema in the same way that Membership was, but relational storage 
is still the default—and simplest—option, and it is the one that I will be using in this chapter. Although the NoSQL 
movement has gained momentum in recent years, relational databases are still the mainstream storage choice and are 
well-understood in most development teams.

ASP.NET Identity uses the Entity Framework Code First feature to automatically create its schema, but I still need 
to create the database into which that schema—and the user data—will be placed, just as I did in Chapter 10 when I 
created the database for session state data (the universal provider that I used to manage the database uses the same 
Code First feature).

Tip■■  Y ou don’t need to understand how Entity Framework or the Code First feature works to use ASP.NET Identity.

As in Chapter 10, I will be using the localdb feature to create my database. As a reminder, localdb is included in 
Visual Studio and is a cut-down version of SQL Server that allows developers to easily create and work with databases.

Select SQL Server Object Explorer from the Visual Studio View menu and right-click the SQL Server object in the 
window that appears. Select Add SQL Server from the pop-up menu, as shown in Figure 13-2.

Figure 13-2.  Creating a new database connection

Visual Studio will display the Connect to Server dialog. Set the server name to (localdb)\v11.0, select the 
Windows Authentication option, and click the Connect button. A connection to the database will be established and 
shown in the SQL Server Object Explorer window. Expand the new item, right-click Databases, and select Add New 
Database from the pop-up window, as shown in Figure 13-3.



Chapter 13 ■ Getting Started with Identity

302

Set the Database Name option to IdentityDb, leave the Database Location value unchanged, and click the OK 
button to create the database. The new database will be shown in the Databases section of the SQL connection in the 
SQL Server Object Explorer.

Adding the Identity Packages
Identity is published as a set of NuGet packages, which makes it easy to install them into any project. Enter the 
following commands into the Package Manager Console: 

Install-Package Microsoft.AspNet.Identity.EntityFramework –Version 2.0.0
Install-Package Microsoft.AspNet.Identity.OWIN -Version 2.0.0
Install-Package Microsoft.Owin.Host.SystemWeb -Version 2.1.0 

Visual Studio can create projects that are configured with a generic user account management configuration, 
using the Identity API. You can add the templates and code to a project by selecting the MVC template when creating 
the project and setting the Authentication option to Individual User Accounts. I don’t use the templates because I 
find them too general and too verbose and because I like to have direct control over the contents and configuration of 
my projects. I recommend you do the same, not least because you will gain a better understanding of how important 
features work, but it can be interesting to look at the templates to see how common tasks are performed.

Updating the Web.config File
Two changes are required to the Web.config file to prepare a project for ASP.NET Identity. The first is a connection 
string that describes the database I created in the previous section. The second change is to define an application 
setting that names the class that initializes OWIN middleware and that is used to configure Identity. Listing 13-4 
shows the changes I made to the Web.config file. (I explained how connection strings and application settings work  
in Chapter 9.)

Listing 13-4.  Preparing the Web.config File for ASP.NET Identity

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 

Figure 13-3.  Adding a new database



Chapter 13 ■ Getting Started with Identity

303

  <configSections>
    <section name="entityFramework" 
        type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection,
        EntityFramework, Version=6.0.0.0, Culture=neutral,
        PublicKeyToken=b77a5c561934e089" requirePermission="false" />
  </configSections>
 
  <connectionStrings>
    <add name="IdentityDb" providerName="System.Data.SqlClient"
         connectionString="Data Source=(localdb)\v11.0;Initial
             Catalog=IdentityDb;Integrated Security=True;Connect
              Timeout=15;Encrypt=False;TrustServerCertificate=False;
              MultipleActiveResultSets=True"/>
  </connectionStrings>
   
  <appSettings>
    <add key="webpages:Version" value="3.0.0.0" />
    <add key="webpages:Enabled" value="false" />
    <add key="ClientValidationEnabled" value="true" />
    <add key="UnobtrusiveJavaScriptEnabled" value="true" />
    <add key="owin:AppStartup" value="Users.IdentityConfig" />
  </appSettings>
  <system.web>
    <compilation debug="true" targetFramework="4.5.1" />
    <httpRuntime targetFramework="4.5.1" />
  </system.web>
  <entityFramework>
    <defaultConnectionFactory
        type="System.Data.Entity.Infrastructure.LocalDbConnectionFactory,
            EntityFramework">
      <parameters>
        <parameter value="v11.0" />
      </parameters>
    </defaultConnectionFactory>
    <providers>
      <provider invariantName="System.Data.SqlClient"
         type="System.Data.Entity.SqlServer.SqlProviderServices,
            EntityFramework.SqlServer" />
    </providers>
  </entityFramework>
</configuration> 

Caution■■   Make sure you put the connectionString value on a single line. I had to break it over several lines to make 
the listing fit on the page, but ASP.NET expects a single, unbroken string. If in doubt, download the source code that  
accompanies this book, which is freely available from www.apress.com.

OWIN defines its own application startup model, which is separate from the global application class that I 
described in Chapter 3. The application setting, called owin:AppStartup, specifies a class that OWIN will instantiate 
when the application starts in order to receive its configuration.

http://www.apress.com/


Chapter 13 ■ Getting Started with Identity

304

Tip■■  N otice that I have set the MultipleActiveResultSets property to true in the connection string. This allows the 
results from multiple queries to be read simultaneously, which I rely on in Chapter 14 when I show you how to authorize 
access to action methods based on role membership.

Creating the Entity Framework Classes
If you have used Membership in projects, you may be surprised by just how much initial preparation is required for 
ASP.NET Identity. The extensibility that Membership lacked is readily available in ASP.NET Identity, but it comes with 
a price of having to create a set of implementation classes that the Entity Framework uses to manage the database. In 
the sections that follow, I’ll show you how to create the classes needed to get Entity Framework to act as the storage 
system for ASP.NET Identity.

Creating the User Class
The first class to define is the one that represents a user, which I will refer to as the user class. The user class is 
derived from IdentityUser, which is defined in the Microsoft.AspNet.Identity.EntityFramework namespace. 
IdentityUser provides the basic user representation, which can be extended by adding properties to the derived 
class, which I describe in Chapter 15. Table 13-2 shows the built-in properties that IdentityUser defines, which are 
the ones I will be using in this chapter.

Table 13-2.  The Properties Defined by the IdentityUser Class

Name Description

Claims Returns the collection of claims for the user, which I describe in Chapter 15

Email Returns the user’s e-mail address

Id Returns the unique ID for the user

Logins Returns a collection of logins for the user, which I use in Chapter 15

PasswordHash Returns a hashed form of the user password, which I use in the “Implementing the Edit 
Feature” section

Roles Returns the collection of roles that the user belongs to, which I describe in Chapter 14

PhoneNumber Returns the user’s phone number

SecurityStamp Returns a value that is changed when the user identity is altered, such as by a password change

UserName Returns the username



Chapter 13 ■ Getting Started with Identity

305

Tip■■  T he classes in the Microsoft.AspNet.Identity.EntityFramework namespace are the Entity Framework–specific 
concrete implementations of interfaces defined in the Microsoft.AspNet.Identity namespace. IdentityUser,  
for example, is the implementation of the IUser interface. I am working with the concrete classes because I am relying 
on the Entity Framework to store my user data in a database, but as ASP.NET Identity matures, you can expect to see 
alternative implementations of the interfaces that use different storage mechanisms (although most projects will still use 
the Entity Framework since it comes from Microsoft).

What is important at the moment is that the IdentityUser class provides access only to the basic information 
about a user: the user’s name, e-mail, phone, password hash, role memberships, and so on. If I want to store any 
additional information about the user, I have to add properties to the class that I derive from IdentityUser and that 
will be used to represent users in my application. I demonstrate how to do this in Chapter 15.

To create the user class for my application, I created a class file called AppUserModels.cs in the Models folder and 
used it to create the AppUser class, which is shown in Listing 13-5.

Listing 13-5.  The Contents of the AppUser.cs File

using System;
using Microsoft.AspNet.Identity.EntityFramework;
 
namespace Users.Models {
    public class AppUser : IdentityUser {
        // additional properties will go here
    }
}
 

That’s all I have to do at the moment, although I’ll return to this class in Chapter 15, when I show you how to add 
application-specific user data properties.

Creating the Database Context Class
The next step is to create an Entity Framework database context that operates on the AppUser class. This will allow 
the Code First feature to create and manage the schema for the database and provide access to the data it stores. The 
context class is derived from IdentityDbContext<T>, where T is the user class (AppUser in the example). I created a 
folder called Infrastructure in the project and added to it a class file called AppIdentityDbContext.cs, the contents 
of which are shown in Listing 13-6.

Listing 13-6.  The Contents of the AppIdentityDbContext.cs File

using System.Data.Entity;
using Microsoft.AspNet.Identity.EntityFramework;
using Users.Models;
 
namespace Users.Infrastructure {
    public class AppIdentityDbContext : IdentityDbContext<AppUser> {
 
        public AppIdentityDbContext() : base("IdentityDb") { }
 



Chapter 13 ■ Getting Started with Identity

306

        static AppIdentityDbContext() {
            Database.SetInitializer<AppIdentityDbContext>(new IdentityDbInit());
        }
 
        public static AppIdentityDbContext Create() {
            return new AppIdentityDbContext();
        }
    }
 
    public class IdentityDbInit
            : DropCreateDatabaseIfModelChanges<AppIdentityDbContext> {
 
        protected override void Seed(AppIdentityDbContext context) {
            PerformInitialSetup(context);
            base.Seed(context);
        }
 
        public void PerformInitialSetup(AppIdentityDbContext context) {
            // initial configuration will go here
        }
    }
}
 

The constructor for the AppIdentityDbContext class calls its base with the name of the connection string that will 
be used to connect to the database, which is IdentityDb in this example. This is how I associate the connection string 
I defined in Listing 13-4 with ASP.NET Identity.

The AppIdentityDbContext class also defines a static constructor, which uses the Database.SetInitializer 
method to specify a class that will seed the database when the schema is first created through the Entity Framework 
Code First feature. My seed class is called IdentityDbInit, and I have provided just enough of a class to create a 
placeholder so that I can return to seeding the database later by adding statements to the PerformInitialSetup 
method. I show you how to seed the database in Chapter 14.

Finally, the AppIdentityDbContext class defines a Create method. This is how instances of the class will be 
created when needed by the OWIN, using the class I describe in the “Creating the Start Class” section.

Note■■  D on’t worry if the role of these classes doesn’t make sense. If you are unfamiliar with the Entity Framework, 
then I suggest you treat it as something of a black box. Once the basic building blocks are in place—and you can copy 
the ones into your chapter to get things working—then you will rarely need to edit them.

Creating the User Manager Class
One of the most important Identity classes is the user manager, which manages instances of the user class. The 
user manager class must be derived from UserManager<T>, where T is the user class. The UserManager<T> class isn’t 
specific to the Entity Framework and provides more general features for creating and operating on user data.  
Table 13-3 shows the basic methods and properties defined by the UserManager<T> class for managing users. There 
are others, but rather than list them all here, I’ll describe them in context when I describe the different ways in which 
user data can be managed.



Chapter 13 ■ Getting Started with Identity

307

Tip■■  N otice that the names of all of these methods end with Async. This is because ASP.NET Identity is implemented 
almost entirely using C# asynchronous programming features, which means that operations will be performed concurrently 
and not block other activities. You will see how this works once I start demonstrating how to create and manage user 
data. There are also synchronous extension methods for each Async method. I stick to the asynchronous methods for most 
examples, but the synchronous equivalents are useful if you need to perform multiple related operations in sequence.  
I have included an example of this in the “Seeding the Database” section of Chapter 14. The synchronous methods are also 
useful when you want to call Identity methods from within property getters or setters, which I do in Chapter 15.

I added a class file called AppUserManager.cs to the Infrastructure folder and used it to define the user 
manager class, which I have called AppUserManager, as shown in Listing 13-7.

Listing 13-7.  The Contents of the AppUserManager.cs File

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Users.Models;
 
namespace Users.Infrastructure {
    public class AppUserManager : UserManager<AppUser> {
 

Table 13-3.  The Basic Methods and Properties Defined by the UserManager<T> Class

Name Description

ChangePasswordAsync(id, old, new) Changes the password for the specified user.

CreateAsync(user) Creates a new user without a password. See Chapter 15 for an example.

CreateAsync(user, pass) Creates a new user with the specified password. See the  
“Creating Users” section.

DeleteAsync(user) Deletes the specified user. See the “Implementing the Delete Feature” 
section.

FindAsync(user, pass) Finds the object that represents the user and authenticates their 
password. See Chapter 14 for details of authentication.

FindByIdAsync(id) Finds the user object associated with the specified ID. See the 
“Implementing the Delete Feature” section.

FindByNameAsync(name) Finds the user object associated with the specified name. I use this 
method in the “Seeding the Database” section of Chapter 14.

UpdateAsync(user) Pushes changes to a user object back into the database. See the 
“Implementing the Edit Feature” section.

Users Returns an enumeration of the users. See the “Enumerating User 
Accounts” section.



Chapter 13 ■ Getting Started with Identity

308

        public AppUserManager(IUserStore<AppUser> store)
            : base(store) {
        }
 
        public static AppUserManager Create(
                IdentityFactoryOptions<AppUserManager> options,
                IOwinContext context) {
 
            AppIdentityDbContext db = context.Get<AppIdentityDbContext>();
            AppUserManager manager = new AppUserManager(new UserStore<AppUser>(db));
 
            return manager;
        }
    }
}
 

The static Create method will be called when Identity needs an instance of the AppUserManager, which will 
happen when I perform operations on user data—something that I will demonstrate once I have finished performing 
the setup.

To create an instance of the AppUserManager class, I need an instance of UserStore<AppUser>. The UserStore<T> 
class is the Entity Framework implementation of the IUserStore<T> interface, which provides the storage-specific 
implementation of the methods defined by the UserManager class. To create the UserStore<AppUser>, I need an 
instance of the AppIdentityDbContext class, which I get through OWIN as follows:
 
...
AppIdentityDbContext db = context.Get<AppIdentityDbContext>();
...
 

The IOwinContext implementation passed as an argument to the Create method defines a generically typed Get 
method that returns instances of objects that have been registered in the OWIN start class, which I describe in the 
following section.

Creating the Start Class
The final piece I need to get ASP.NET Identity up and running is a start class. In Listing 13-4, I defined an application 
setting that specified a configuration class for OWIN, like this:
 
...
<add key="owin:AppStartup" value="Users.IdentityConfig" />
...
 

OWIN emerged independently of ASP.NET and has its own conventions. One of them is that there is a class 
that is instantiated to load and configure middleware and perform any other configuration work that is required. 
By default, this class is called Start, and it is defined in the global namespace. This class contains a method called 
Configuration, which is called by the OWIN infrastructure and passed an implementation of the Owin.IAppBuilder 
interface, which supports setting up the middleware that an application requires. The Start class is usually defined as 
a partial class, with its other class files dedicated to each kind of middleware that is being used.

I freely ignore this convention, given that the only OWIN middleware that I use in MVC framework applications is 
Identity. I prefer to use the application setting in the Web.config file to define a single class in the top-level namespace 
of the application. To this end, I added a class file called IdentityConfig.cs to the App_Start folder and used it to 
define the class shown in Listing 13-8, which is the class that I specified in the Web.config folder.



Chapter 13 ■ Getting Started with Identity

309

Listing 13-8.  The Contents of the IdentityConfig.cs File

using Microsoft.AspNet.Identity;
using Microsoft.Owin;
using Microsoft.Owin.Security.Cookies;
using Owin;
using Users.Infrastructure;
 
namespace Users {
    public class IdentityConfig {
        public void Configuration(IAppBuilder app) {
 
            app.CreatePerOwinContext<AppIdentityDbContext>(AppIdentityDbContext.Create);
            app.CreatePerOwinContext<AppUserManager>(AppUserManager.Create);
             
            app.UseCookieAuthentication(new CookieAuthenticationOptions {
                AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
                LoginPath = new PathString("/Account/Login"),
            });
        }
    }
}
 

The IAppBuilder interface is supplemented by a number of extension methods defined in classes in the 
Owin namespace. The CreatePerOwinContext method creates a new instance of the AppUserManager and 
AppIdentityDbContext classes for each request. This ensures that each request has clean access to the ASP.NET 
Identity data and that I don’t have to worry about synchronization or poorly cached database data.

The UseCookieAuthentication method tells ASP.NET Identity how to use a cookie to identity authenticated 
users, where the options are specified through the CookieAuthenticationOptions class. The important part here is 
the LoginPath property, which specifies a URL that clients should be redirected to when they request content without 
authentication. I have specified /Account/Login, and I will create the controller that handles these redirections in 
Chapter 14.

Using ASP.NET Identity
Now that the basic setup is out of the way, I can start to use ASP.NET Identity to add support for managing users to 
the example application. In the sections that follow, I will demonstrate how the Identity API can be used to create 
administration tools that allow for centralized management of users. Table 13-4 puts ASP.NET Identity into context.

Table 13-4.  Putting Content Caching by Attribute in Context

Question Answer

What is it? ASP.NET Identity is the API used to manage user data and perform authentication and 
authorization.

Why should I care? Most applications require users to create accounts and provide credentials to access 
content and features. ASP.NET Identity provides the facilities for performing these 
operations.

How is it used by the  
MVC framework?

ASP.NET Identity isn’t used directly by the MVC framework but integrates through the 
standard MVC authorization features.



Chapter 13 ■ Getting Started with Identity

310

Enumerating User Accounts
Centralized user administration tools are useful in just about all applications, even those that allow users to create 
and manage their own accounts. There will always be some customers who require bulk account creation, for 
example, and support issues that require inspection and adjustment of user data. From the perspective of this chapter, 
administration tools are useful because they consolidate a lot of basic user management functions into a small 
number of classes, making them useful examples to demonstrate the fundamental features of ASP.NET Identity.

I started by adding a controller called Admin to the project, which is shown in Listing 13-9, and which I will use to 
define my user administration functionality.

Listing 13-9.  The Contents of the AdminController.cs File

using System.Web;
using System.Web.Mvc;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
 
namespace Users.Controllers {
    public class AdminController : Controller {
 
        public ActionResult Index() {
            return View(UserManager.Users);
        }
 
        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
    }
}
 

The Index action method enumerates the users managed by the Identity system; of course, there aren’t any 
users at the moment, but there will be soon. The important part of this listing is the way that I obtain an instance of the 
AppUserManager class, through which I manage user information. I will be using the AppUserManager class repeatedly 
as I implement the different administration functions, and I defined the UserManager property in the Admin controller 
to simplify my code.

The Microsoft.Owin.Host.SystemWeb assembly adds extension methods for the HttpContext class, one of which 
is GetOwinContext. This provides a per-request context object into the OWIN API through an IOwinContext object. 
The IOwinContext isn’t that interesting in an MVC framework application, but there is another extension method 
called GetUserManager<T> that is used to get instances of the user manager class.

Tip■■  A s you may have gathered, there are lots of extension methods in ASP.NET Identity; overall, the API is something of a 
muddle as it tries to mix OWIN, abstract Identity functionality, and the concrete Entity Framework storage implementation.



Chapter 13 ■ Getting Started with Identity

311

I called the GetUserManager with a generic type parameter to specify the AppUserManager class that I created 
earlier in the chapter, like this:
 
...
return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
...
 

Once I have an instance of the AppUserManager class, I can start to query the data store. The AppUserManager.Users 
property returns an enumeration of user objects—instances of the AppUser class in my application—which can be 
queried and manipulated using LINQ.

In the Index action method, I pass the value of the Users property to the View method so that I can list details  
of the users in the view. Listing 13-10 shows the contents of the Views/Admin/Index.cshtml file that I created by  
right-clicking the Index action method and selecting Add View from the pop-up menu.

Listing 13-10.  The Contents of the Index.cshtml File in the /Views/Admin Folder

@using Users.Models
@model IEnumerable<AppUser>
@{
    ViewBag.Title = "Index";
}
 
<div class="panel panel-primary">
    <div class="panel-heading">
        User Accounts
    </div>
    <table class="table table-striped">
        <tr><th>ID</th><th>Name</th><th>Email</th></tr>
        @if (Model.Count() == 0) {
            <tr><td colspan="3" class="text-center">No User Accounts</td></tr>
        } else {
            foreach (AppUser user in Model) {
                <tr>
                    <td>@user.Id</td>
                    <td>@user.UserName</td>
                    <td>@user.Email</td>
                </tr>
            }
        }
    </table>
</div>
@Html.ActionLink("Create", "Create", null, new { @class = "btn btn-primary" })
 

This view contains a table that has rows for each user, with columns for the unique ID, username, and e-mail 
address. If there are no users in the database, then a message is displayed, as shown in Figure 13-4.



Chapter 13 ■ Getting Started with Identity

312

I included a Create link in the view (which I styled as a button using Bootstrap) that targets the Create action on 
the Admin controller. I’ll implement this action shortly to support adding users.

RESETTING THE DATABASE

When you start the application and navigate to the /Admin/Index URL, it will take a few moments before the 
contents rendered from the view are displayed. This is because the Entity Framework has connected to the 
database and determined that there is no schema defined. The Code First feature uses the classes I defined 
earlier in the chapter (and some which are contained in the Identity assemblies) to create the schema so that it is 
ready to be queried and to store data.

You can see the effect by opening the Visual Studio SQL Server Object Explorer window and expanding entry for 
the IdentityDB database schema, which will include tables with names such as AspNetUsers and AspNetRoles.

To delete the database, right-click the IdentityDb item and select Delete from the pop-up menu. Check both of the 
options in the Delete Database dialog and click the OK button to delete the database.

Right-click the Databases item, select Add New Database (as shown in Figure 13-3), and enter IdentityDb in the 
Database Name field. Click OK to create the empty database. The next time you start the application and navigate 
to the Admin/Index URL, the Entity Framework will detect that there is no schema and re-create it.

Creating Users
I am going to use MVC framework model validation for the input my application receives, and the easiest way to do 
this is to create simple view models for each of the operations that my controller supports. I added a class file called 
UserViewModels.cs to the Models folder and used it to define the class shown in Listing 13-11. I’ll add further classes 
to this file as I define models for additional features.

Figure 13-4.  Display the (empty) list of users



Chapter 13 ■ Getting Started with Identity

313

Listing 13-11.  The Contents of the UserViewModels.cs File

using System.ComponentModel.DataAnnotations;
 
namespace Users.Models {
 
    public class CreateModel {
        [Required]
        public string Name { get; set; }
        [Required]
        public string Email { get; set; }
        [Required]
        public string Password { get; set; }
    }
}
 

The initial model I have defined is called CreateModel, and it defines the basic properties that I require to  
create a user account: a username, an e-mail address, and a password. I have used the Required attribute from the 
System.ComponentModel.DataAnnotations namespace to denote that values are required for all three properties 
defined in the model.

I added a pair of Create action methods to the Admin controller, which are targeted by the link in the Index view 
from the previous section and which uses the standard controller pattern to present a view to the user for a GET 
request and process form data for a POST request. You can see the new action methods in Listing 13-12.

Listing 13-12.  Defining the Create Action Methods in the AdminController.cs File

using System.Web;
using System.Web.Mvc;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using Users.Models;
using Microsoft.AspNet.Identity;
using System.Threading.Tasks;
 
namespace Users.Controllers {
    public class AdminController : Controller {
 
        public ActionResult Index() {
            return View(UserManager.Users);
        }
 
        public ActionResult Create() {
            return View();
        }
 
        [HttpPost]
        public async Task<ActionResult> Create(CreateModel model) {
            if (ModelState.IsValid) {
                AppUser user = new AppUser {UserName = model.Name, Email = model.Email};
                IdentityResult result = await UserManager.CreateAsync(user,
                    model.Password);



Chapter 13 ■ Getting Started with Identity

314

                if (result.Succeeded) {
                    return RedirectToAction("Index");
                } else {
                    AddErrorsFromResult(result);
                }
            }
            return View(model);
        }
 
        private void AddErrorsFromResult(IdentityResult result) {
            foreach (string error in result.Errors) {
                ModelState.AddModelError("", error);
            }
        }
 
        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
 
    }
}
 

The important part of this listing is the Create method that takes a CreateModel argument and that will be 
invoked when the administrator submits their form data. I use the ModelState.IsValid property to check that the 
data I am receiving contains the values I require, and if it does, I create a new instance of the AppUser class and pass it 
to the UserManager.CreateAsync method, like this:
 
...
AppUser user = new AppUser {UserName = model.Name, Email = model.Email};
IdentityResult result = await UserManager.CreateAsync(user, model.Password);
...
 

The result from the CreateAsync method is an implementation of the IdentityResult interface, which describes 
the outcome of the operation through the properties listed in Table 13-5.

Table 13-5.  The Properties Defined by the IdentityResult Interface

Name Description

Errors Returns a string enumeration that lists the errors encountered while attempting the operation

Succeeded Returns true if the operation succeeded



Chapter 13 ■ Getting Started with Identity

315

USING THE ASP.NET IDENTITY ASYNCHRONOUS METHODS

You will notice that all of the operations for manipulating user data, such as the UserManager.CreateAsync 
method I used in Listing 13-12, are available as asynchronous methods. Such methods are easily consumed with 
the async and await keywords. Using asynchronous Identity methods allows your action methods to be executed 
asynchronously, which can improve the overall throughput of your application.

However, you can also use synchronous extension methods provided by the Identity API. All of the commonly used 
asynchronous methods have a synchronous wrapper so that the functionality of the UserManager.CreateAsync 
method can be called through the synchronous UserManager.Create method. I use the asynchronous methods 
for preference, and I recommend you follow the same approach in your projects. The synchronous methods can 
be useful for creating simpler code when you need to perform multiple dependent operations, so I used them in 
the “Seeding the Database” section of Chapter 14 as a demonstration.

I inspect the Succeeded property in the Create action method to determine whether I have been able to create a 
new user record in the database. If the Succeeded property is true, then I redirect the browser to the Index action so 
that list of users is displayed:
 
...
if (result.Succeeded) {
    return RedirectToAction("Index");
} else {
    AddErrorsFromResult(result);
}
...
 

If the Succeeded property is false, then I call the AddErrorsFromResult method, which enumerates the 
messages from the Errors property and adds them to the set of model state errors, taking advantage of the MVC 
framework model validation feature. I defined the AddErrorsFromResult method because I will have to process  
errors from other operations as I build the functionality of my administration controller. The last step is to  
create the view that will allow the administrator to create new accounts. Listing 13-13 shows the contents of the 
Views/Admin/Create.cshtml file.

Listing 13-13.  The Contents of the Create.cshtml File

@model Users.Models.CreateModel
@{ ViewBag.Title = "Create User";}
<h2>Create User</h2>
@Html.ValidationSummary(false)
@using (Html.BeginForm()) {
    <div class="form-group">
        <label>Name</label>
        @Html.TextBoxFor(x => x.Name, new { @class = "form-control"})
    </div>
    <div class="form-group">
        <label>Email</label>
        @Html.TextBoxFor(x => x.Email, new { @class = "form-control" })
    </div>



Chapter 13 ■ Getting Started with Identity

316

    <div class="form-group">
        <label>Password</label>
        @Html.PasswordFor(x => x.Password, new { @class = "form-control" })
    </div>
    <button type="submit" class="btn btn-primary">Create</button>
    @Html.ActionLink("Cancel", "Index", null, new { @class = "btn btn-default"})
}
 

There is nothing special about this view—it is a simple form that gathers values that the MVC framework will 
bind to the properties of the model class that is passed to the Create action method.

Testing the Create Functionality
To test the ability to create a new user account, start the application, navigate to the /Admin/Index URL, and click the 
Create button. Fill in the form with the values shown in Table 13-6.

Figure 13-5.  The effect of adding a new user account

Table 13-6.  The Values for Creating an Example User

Name Value

Name Joe

Email joe@example.com

Password secret

Tip■■  A lthough not widely known by developers, there are domains that are reserved for testing, including example.com. 
You can see a complete list at https://tools.ietf.org/html/rfc2606.

Once you have entered the values, click the Create button. ASP.NET Identity will create the user account, which 
will be displayed when your browser is redirected to the Index action method, as shown in Figure 13-5. You will see a 
different ID value because IDs are randomly generated for each user account.

http://joe@example.com
http://example.com/
https://tools.ietf.org/html/rfc2606


Chapter 13 ■ Getting Started with Identity

317

Click the Create button again and enter the same details into the form, using the values in Table 13-6. This time when 
you submit the form, you will see an error reported through the model validation summary, as shown in Figure 13-6.

Figure 13-6.  An error trying to create a new user

Table 13-7.  The Properties Defined by the PasswordValidator Class

Name Description

RequiredLength Specifies the minimum length of a valid passwords.

RequireNonLetterOrDigit When set to true, valid passwords must contain a character that is neither a letter 
nor a digit.

RequireDigit When set to true, valid passwords must contain a digit.

RequireLowercase When set to true, valid passwords must contain a lowercase character.

RequireUppercase When set to true, valid passwords must contain a uppercase character.

Validating Passwords
One of the most common requirements, especially for corporate applications, is to enforce a password policy.  
ASP.NET Identity provides the PasswordValidator class, which can be used to configure a password policy using the 
properties described in Table 13-7.



Chapter 13 ■ Getting Started with Identity

318

A password policy is defined by creating an instance of the PasswordValidator class, setting the property values, 
and using the object as the value for the PasswordValidator property in the Create method that OWIN uses to 
instantiate the AppUserManager class, as shown in Listing 13-14.

Listing 13-14.  Setting a Password Policy in the AppUserManager.cs File

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Users.Models;
 
namespace Users.Infrastructure {
    public class AppUserManager : UserManager<AppUser> {
 
        public AppUserManager(IUserStore<AppUser> store) : base(store) {
        }
 
        public static AppUserManager Create(IdentityFactoryOptions<AppUserManager>
                options, IOwinContext context) {
 
            AppIdentityDbContext db = context.Get<AppIdentityDbContext>();
            AppUserManager manager = new AppUserManager(
                new UserStore<AppUser>(db));
 
            manager.PasswordValidator = new PasswordValidator {
                RequiredLength = 6,
                RequireNonLetterOrDigit = false,
                RequireDigit = false,
                RequireLowercase = true,
                RequireUppercase = true
            };
 
            return manager;
        }
    }
}
 

I used the PasswordValidator class to specify a policy that requires at least six characters and a mix of uppercase 
and lowercase characters. You can see how the policy is applied by starting the application, navigating to the /Admin/
Index URL, clicking the Create button, and trying to create an account that has the password secret. The password 
doesn’t meet the new password policy, and an error is added to the model state, as shown in Figure 13-7.



Chapter 13 ■ Getting Started with Identity

319

Implementing a Custom Password Validator
The built-in password validation is sufficient for most applications, but you may need to implement a custom policy, 
especially if you are implementing a corporate line-of-business application where complex password policies are 
common. Extending the built-in functionality is done by deriving a new class from PasswordValidatator and 
overriding the ValidateAsync method. As a demonstration, I added a class file called CustomPasswordValidator.cs 
in the Infrastructure folder and used it to define the class shown in Listing 13-15.

Listing 13-15.  The Contents of the CustomPasswordValidator.cs File

using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.Identity;
 
namespace Users.Infrastructure {
 
    public class CustomPasswordValidator : PasswordValidator {
        public override async Task<IdentityResult> ValidateAsync(string pass) {
            IdentityResult result = await base.ValidateAsync(pass);
            if (pass.Contains("12345")) {
                var errors = result.Errors.ToList();

Figure 13-7.  Reporting an error when validating a password



Chapter 13 ■ Getting Started with Identity

320

                errors.Add("Passwords cannot contain numeric sequences");
                result = new IdentityResult(errors);
            }
            return result;
        }
    }
}
 

I have overridden the ValidateAsync method and call the base implementation so I can benefit from the built-in 
validation checks. The ValidateAsync method is passed the candidate password, and I perform my own check to 
ensure that the password does not contain the sequence 12345. The properties of the IdentityResult class are  
read-only, which means that if I want to report a validation error, I have to create a new instance, concatenate my 
error with any errors from the base implementation, and pass the combined list as the constructor argument. I used 
LINQ to concatenate the base errors with my custom one.

Listing 13-16 shows the application of my custom password validator in the AppUserManager class.

Listing 13-16.  Applying a Custom Password Validator in the AppUserManager.cs File

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Users.Models;
 
namespace Users.Infrastructure {
    public class AppUserManager : UserManager<AppUser> {
 
        public AppUserManager(IUserStore<AppUser> store) : base(store) {
        }
 
        public static AppUserManager Create(IdentityFactoryOptions<AppUserManager>
                options, IOwinContext context) {
 
            AppIdentityDbContext db = context.Get<AppIdentityDbContext>();
            AppUserManager manager = new AppUserManager(
                new UserStore<AppUser>(db));
 
            manager.PasswordValidator = new CustomPasswordValidator {
                RequiredLength = 6,
                RequireNonLetterOrDigit = false,
                RequireDigit = false,
                RequireLowercase = true,
                RequireUppercase = true
            };
 
            return manager;
        }
    }
}
 



Chapter 13 ■ Getting Started with Identity

321

To test the custom password validation, try to create a new user account with the password secret12345.  
This will break two of the validation rules—one from the built-in validator and one from my custom implementation. 
Error messages for both problems are added to the model state and displayed when the Create button is clicked,  
as shown in Figure 13-8.

Figure 13-8.  The effect of a custom password validation policy

Table 13-8.  The Properties Defined by the UserValidator Class

Name Description

AllowOnlyAlphanumericUserNames When true, usernames can contain only alphanumeric characters.

RequireUniqueEmail When true, e-mail addresses must be unique.

Validating User Details
More general validation can be performed by creating an instance of the UserValidator class and using the 
properties it defines to restrict other user property values. Table 13-8 describes the UserValidator properties.

Performing validation on user details is done by creating an instance of the UserValidator class and assigning 
it to the UserValidator property of the user manager class within the Create method that OWIN uses to create 
instances. Listing 13-17 shows an example of using the built-in validator class.



Chapter 13 ■ Getting Started with Identity

322

Listing 13-17.  Using the Built-in user Validator Class in the AppUserManager.cs File

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Users.Models;
 
namespace Users.Infrastructure {
    public class AppUserManager : UserManager<AppUser> {
 
        public AppUserManager(IUserStore<AppUser> store) : base(store) {
        }
 
        public static AppUserManager Create(IdentityFactoryOptions<AppUserManager>
                options, IOwinContext context) {
 
            AppIdentityDbContext db = context.Get<AppIdentityDbContext>();
            AppUserManager manager = new AppUserManager(
                new UserStore<AppUser>(db));
 
            manager.PasswordValidator = new CustomPasswordValidator {
                RequiredLength = 6,
                RequireNonLetterOrDigit = false,
                RequireDigit = false,
                RequireLowercase = true,
                RequireUppercase = true
            };
 
            manager.UserValidator = new UserValidator<AppUser>(manager) {
                AllowOnlyAlphanumericUserNames = true,
                RequireUniqueEmail = true
            };
 
            return manager;
        }
    }
}
 

The UserValidator class takes a generic type parameter that specifies the type of the user class, which is AppUser 
in this case. Its constructor argument is the user manager class, which is an instance of the user manager class  
(which is AppUserManager for my application).

The built-in validation support is rather basic, but you can create a custom validation policy by creating a class 
that is derived from UserValidator. As a demonstration, I added a class file called CustomUserValidator.cs to the 
Infrastructure folder and used it to create the class shown in Listing 13-18.

Listing 13-18.  The Contents of the CustomUserValidator.cs File

using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNet.Identity;
using Users.Models;
 



Chapter 13 ■ Getting Started with Identity

323

namespace Users.Infrastructure {
 
    public class CustomUserValidator : UserValidator<AppUser> {
 
        public CustomUserValidator(AppUserManager mgr)
            : base(mgr) {
        }
 
        public override async Task<IdentityResult> ValidateAsync(AppUser user) {
            IdentityResult result = await base.ValidateAsync(user);
 
            if (!user.Email.ToLower().EndsWith("@example.com")) {
                var errors = result.Errors.ToList();
                errors.Add("Only example.com email addresses are allowed");
                result = new IdentityResult(errors);
            }
            return result;
        }
    }
}
 

The constructor of the derived class must take an instance of the user manager class and call the base 
implementation so that the built-in validation checks can be performed. Custom validation is implemented by 
overriding the ValidateAsync method, which takes an instance of the user class and returns an IdentityResult 
object. My custom policy restricts users to e-mail addresses in the example.com domain and performs the same LINQ 
manipulation I used for password validation to concatenate my error message with those produced by the base class. 
Listing 13-19 shows how I applied my custom validation class in the Create method of the AppUserManager class, 
replacing the default implementation.

Listing 13-19.  Using a Custom User Validation Class in the AppUserManager.cs File

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Users.Models;
 
namespace Users.Infrastructure {
    public class AppUserManager : UserManager<AppUser> {
 
        public AppUserManager(IUserStore<AppUser> store) : base(store) {
        }
 
        public static AppUserManager Create(IdentityFactoryOptions<AppUserManager>
                options, IOwinContext context) {
 
            AppIdentityDbContext db = context.Get<AppIdentityDbContext>();
            AppUserManager manager = new AppUserManager(
                new UserStore<AppUser>(db));
 

http://@example.com/
http://example.com/
http://example.com/


Chapter 13 ■ Getting Started with Identity

324

            manager.PasswordValidator = new CustomPasswordValidator {
                RequiredLength = 6,
                RequireNonLetterOrDigit = false,
                RequireDigit = false,
                RequireLowercase = true,
                RequireUppercase = true
            };
 
            manager.UserValidator = new CustomUserValidator(manager) {
                AllowOnlyAlphanumericUserNames = true,
                RequireUniqueEmail = true
            };
 
            return manager;
        }
    }
}
 

You can see the result if you try to create an account with an e-mail address such as bob@otherdomain.com,  
as shown in Figure 13-9.

Figure 13-9.  An error message shown by a custom user validation policy

http://bob@otherdomain.com/


Chapter 13 ■ Getting Started with Identity

325

Completing the Administration Features
I only have to implement the features for editing and deleting users to complete my administration tool. In Listing 13-20, 
you can see the changes I made to the Views/Admin/Index.cshtml file to target Edit and Delete actions in the  
Admin controller.

Listing 13-20.  Adding Edit and Delete Buttons to the Index.cshtml File

@using Users.Models
@model IEnumerable<AppUser>
@{ ViewBag.Title = "Index"; }
<div class="panel panel-primary">
    <div class="panel-heading">
        User Accounts
    </div>
    <table class="table table-striped">
        <tr><th>ID</th><th>Name</th><th>Email</th><th></th></tr>
        @if (Model.Count() == 0) {
            <tr><td colspan="4" class="text-center">No User Accounts</td></tr>
        } else {
            foreach (AppUser user in Model) {
                <tr>
                    <td>@user.Id</td>
                    <td>@user.UserName</td>
                    <td>@user.Email</td>
                    <td>
                        @using (Html.BeginForm("Delete", "Admin",
                            new { id = user.Id })) {
                            @Html.ActionLink("Edit", "Edit", new { id = user.Id },
                                    new { @class = "btn btn-primary btn-xs" })
                            <button class="btn btn-danger btn-xs"
                                    type="submit">
                                Delete
                            </button>
                        }
                    </td>
                </tr>
            }
        }
    </table>
</div>
@Html.ActionLink("Create", "Create", null, new { @class = "btn btn-primary" }) 

Tip■■  Y ou will notice that I have put the Html.ActionLink call that targets the Edit action method inside the scope 
of the Html.Begin helper. I did this solely so that the Bootstrap styles will style both elements as buttons displayed on a 
single line.



Chapter 13 ■ Getting Started with Identity

326

Implementing the Delete Feature
The user manager class defines a DeleteAsync method that takes an instance of the user class and removes it from the 
database. In Listing 13-21, you can see how I have used the DeleteAsync method to implement the delete feature of 
the Admin controller.

Listing 13-21.  Deleting Users in the AdminController.cs File

using System.Web;
using System.Web.Mvc;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using Users.Models;
using Microsoft.AspNet.Identity;
using System.Threading.Tasks;
 
namespace Users.Controllers {
    public class AdminController : Controller {
 
        // ...other action methods omitted for brevity...
 
        [HttpPost]
        public async Task<ActionResult> Delete(string id) {
            AppUser user = await UserManager.FindByIdAsync(id);
            if (user != null) {
                IdentityResult result = await UserManager.DeleteAsync(user);
                if (result.Succeeded) {
                    return RedirectToAction("Index");
                } else {
                    return View("Error", result.Errors);
                }
            } else {
                return View("Error", new string[] { "User Not Found" });
            }
        }
 
        private void AddErrorsFromResult(IdentityResult result) {
            foreach (string error in result.Errors) {
                ModelState.AddModelError("", error);
            }
        }
 
        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
    }
}
 



Chapter 13 ■ Getting Started with Identity

327

My action method receives the unique ID for the user as an argument, and I use the FindByIdAsync method 
to locate the corresponding user object so that I can pass it to DeleteAsync method. The result of the DeleteAsync 
method is an IdentityResult, which I process in the same way I did in earlier examples to ensure that any errors are 
displayed to the user. You can test the delete functionality by creating a new user and then clicking the Delete button 
that appears alongside it in the Index view.

There is no view associated with the Delete action, so to display any errors I created a view file called Error.cshtml  
in the Views/Shared folder, the contents of which are shown in Listing 13-22.

Listing 13-22.  The Contents of the Error.cshtml File

@model IEnumerable<string>
@{ ViewBag.Title = "Error";}
 
<div class="alert alert-danger">
    @switch (Model.Count()) {
        case 0:
            @: Something went wrong. Please try again
            break;
        case 1:
            @Model.First();
            break;
        default:
            @: The following errors were encountered:
            <ul>
                @foreach (string error in Model) {
                    <li>@error</li>
                }
            </ul>
            break;
    }
</div>
@Html.ActionLink("OK", "Index", null, new { @class = "btn btn-default" }) 

Tip■■  I  put this view in the Views/Shared folder so that it can be used by other controllers, including the one I create to 
manage roles and role membership in Chapter 14.

Implementing the Edit Feature
To complete the administration tool, I need to add support for editing the e-mail address and password for a user 
account. These are the only properties defined by users at the moment, but I’ll show you how to extend the schema 
with custom properties in Chapter 15. Listing 13-23 shows the Edit action methods that I added to the Admin controller.

Listing 13-23.  Adding the Edit Actions in the AdminController.cs File

using System.Web;
using System.Web.Mvc;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using Users.Models;



Chapter 13 ■ Getting Started with Identity

328

using Microsoft.AspNet.Identity;
using System.Threading.Tasks;
 
namespace Users.Controllers {
    public class AdminController : Controller {
 
       // ...other action methods omitted for brevity...
 
        public async Task<ActionResult> Edit(string id) {
            AppUser user = await UserManager.FindByIdAsync(id);
            if (user != null) {
                return View(user);
            } else {
                return RedirectToAction("Index");
            }
        }
 
        [HttpPost]
        public async Task<ActionResult> Edit(string id, string email, string password) {
            AppUser user = await UserManager.FindByIdAsync(id);
            if (user != null) {
                user.Email = email;
                IdentityResult validEmail
                    = await UserManager.UserValidator.ValidateAsync(user);
                if (!validEmail.Succeeded) {
                    AddErrorsFromResult(validEmail);
                }
                IdentityResult validPass = null;
                if (password != string.Empty) {
                    validPass
                        = await UserManager.PasswordValidator.ValidateAsync(password);
                    if (validPass.Succeeded) {
                        user.PasswordHash =
                            UserManager.PasswordHasher.HashPassword(password);
                    } else {
                        AddErrorsFromResult(validPass);
                    }
                }
                if ((validEmail.Succeeded && validPass == null) || ( validEmail.Succeeded
                        && password != string.Empty && validPass.Succeeded)) {
                    IdentityResult result = await UserManager.UpdateAsync(user);
                    if (result.Succeeded) {
                        return RedirectToAction("Index");
                    } else {
                        AddErrorsFromResult(result);
                    }
                }



Chapter 13 ■ Getting Started with Identity

329

            } else {
                ModelState.AddModelError("", "User Not Found");
            }
            return View(user);
        }
 
        private void AddErrorsFromResult(IdentityResult result) {
            foreach (string error in result.Errors) {
                ModelState.AddModelError("", error);
            }
        }
 
        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
    }
}
 

The Edit action targeted by GET requests uses the ID string embedded in the Index view to call the FindByIdAsync 
method in order to get an AppUser object that represents the user.

The more complex implementation receives the POST request, with arguments for the user ID, the new e-mail 
address, and the password. I have to perform several tasks to complete the editing operation.

The first task is to validate the values I have received. I am working with a simple user object at the moment—although  
I’ll show you how to customize the data stored for users in Chapter 15—but even so, I need to validate the user data 
to ensure that I don’t violate the custom policies defined in the “Validating User Details” and “Validating Passwords” 
sections. I start by validating the e-mail address, which I do like this:
 
...
user.Email = email;
IdentityResult validEmail = await UserManager.UserValidator.ValidateAsync(user);
if (!validEmail.Succeeded) {
    AddErrorsFromResult(validEmail);
}
... 

Tip■■  N otice that I have to change the value of the Email property before I perform the validation because the  
ValidateAsync method only accepts instances of the user class.

The next step is to change the password, if one has been supplied. ASP.NET Identity stores hashes of passwords, 
rather than the passwords themselves—this is intended to prevent passwords from being stolen. My next step is to 
take the validated password and generate the hash code that will be stored in the database so that the user can be 
authenticated (which I demonstrate in Chapter 14).



Chapter 13 ■ Getting Started with Identity

330

Passwords are converted to hashes through an implementation of the IPasswordHasher interface, which is 
obtained through the AppUserManager.PasswordHasher property. The IPasswordHasher interface defines the 
HashPassword method, which takes a string argument and returns its hashed value, like this:
 
...
if (password != string.Empty) {
    validPass = await UserManager.PasswordValidator.ValidateAsync(password);
    if (validPass.Succeeded) {
        user.PasswordHash = UserManager.PasswordHasher.HashPassword(password);
    } else {
        AddErrorsFromResult(validPass);
    }
}
...
 

Changes to the user class are not stored in the database until the UpdateAsync method is called, like this:
 
...
if ((validEmail.Succeeded && validPass == null) 
    || ( validEmail.Succeeded && password != string.Empty &&
        validPass.Succeeded)) {
    IdentityResult result = await UserManager.UpdateAsync(user);
    if (result.Succeeded) {
        return RedirectToAction("Index");
    } else {
        AddErrorsFromResult(result);
    }
}
... 

Creating the View
The final component is the view that will render the current values for a user and allow new values to be submitted to 
the controller. Listing 13-24 shows the contents of the Views/Admin/Edit.cshtml file.

Listing 13-24.  The Contents of the Edit.cshtml File

@model Users.Models.AppUser
@{ ViewBag.Title = "Edit"; }
@Html.ValidationSummary(false)
<h2>Edit User</h2>
 
<div class="form-group">
    <label>Name</label>
    <p class="form-control-static">@Model.Id</p>
</div>
@using (Html.BeginForm()) {
    @Html.HiddenFor(x => x.Id)
    <div class="form-group">
        <label>Email</label>
        @Html.TextBoxFor(x => x.Email, new { @class = "form-control" })
    </div>



Chapter 13 ■ Getting Started with Identity

331

    <div class="form-group">
        <label>Password</label>
        <input name="password" type="password" class="form-control" />
    </div>
    <button type="submit" class="btn btn-primary">Save</button>
    @Html.ActionLink("Cancel", "Index", null, new { @class = "btn btn-default" })
}
 

There is nothing special about the view. It displays the user ID, which cannot be changed, as static text and 
provides a form for editing the e-mail address and password, as shown in Figure 13-10. Validation problems are 
displayed in the validation summary section of the view, and successfully editing a user account will return to the list 
of accounts in the system.

Figure 13-10.  Editing a user account

Summary
In this chapter, I showed you how to create the configuration and classes required to use ASP.NET Identity and 
demonstrated how they can be applied to create a user administration tool. In the next chapter, I show you how to 
perform authentication and authorization with ASP.NET Identity.



333

Chapter 14

Applying ASP.NET Identity

In this chapter, I show you how to apply ASP.NET Identity to authenticate and authorize the user accounts created in 
the previous chapter. I explain how the ASP.NET platform provides a foundation for authenticating requests and how 
ASP.NET Identity fits into that foundation to authenticate users and enforce authorization through roles. Table 14-1 
summarizes this chapter.

Table 14-1.  Chapter Summary

Problem Solution Listing

Prepare an application for user 
authentication.

Apply the Authorize attribute to restrict access to action 
methods and define a controller to which users will be redirected 
to provide credentials.

1–4

Authenticate a user. Check the name and password using the FindAsync method 
defined by the user manager class and create an implementation 
of the IIdentity interface using the CreateIdentityMethod. Set 
an authentication cookie for subsequent requests by calling the 
SignIn method defined by the authentication manager class.

5

Prepare an application for role-based 
authorization.

Create a role manager class and register it for instantiation in the 
OWIN startup class.

6–8

Create and delete roles. Use the CreateAsync and DeleteAsync methods defined by the 
role manager class.

9–12

Manage role membership. Use the AddToRoleAsync and RemoveFromRoleAsync methods 
defined by the user manager class.

13–15

Use roles for authorization. Set the Roles property of the Authorize attribute. 16–19

Seed the database with initial content. Use the database context initialization class. 20, 21

Preparing the Example Project
In this chapter, I am going to continue working on the Users project I created in Chapter 13. No changes to the 
application components are required.

Authenticating Users
The most fundamental activity for ASP.NET Identity is to authenticate users, and in this section, I explain and 
demonstrate how this is done. Table 14-2 puts authentication into context.



Chapter 14 ■ Applying ASP.NET Identity

334

Tip■■  I  use names and passwords stored in the ASP.NET Identity database in this chapter. In Chapter 15, I demonstrate 
how ASP.NET Identity can be used to authenticate users with a service from Google (Identity also supports authentication 
for Microsoft, Facebook, and Twitter accounts).

Table 14-2.  Putting Authentication in Context

Question Answer

What is it? Authentication validates credentials provided by users. Once the user is 
authenticated, requests that originate from the browser contain a cookie that 
represents the user identity.

Why should I care? Authentication is how you check the identity of your users and is the first step 
toward restricting access to sensitive parts of the application.

How is it used by the MVC 
framework?

Authentication features are accessed through the Authorize attribute, which 
is applied to controllers and action methods in order to restrict access to 
authenticated users.

Understanding the Authentication/Authorization Process
The ASP.NET Identity system integrates into the ASP.NET platform, which means you use the standard MVC 
framework techniques to control access to action methods, such as the Authorize attribute. In this section, I am going 
to apply basic restrictions to the Index action method in the Home controller and then implement the features that 
allow users to identify themselves so they can gain access to it. Listing 14-1 shows how I have applied the Authorize 
attribute to the Home controller.

Listing 14-1.  Securing the Home Controller

using System.Web.Mvc;
using System.Collections.Generic;
 
namespace Users.Controllers {
 
    public class HomeController : Controller {
 
        [Authorize]
        public ActionResult Index() {
            Dictionary<string, object> data
                = new Dictionary<string, object>();
            data.Add("Placeholder", "Placeholder");
            return View(data);
        }
    }
}
 

Using the Authorize attribute in this way is the most general form of authorization and restricts access to the 
Index action methods to requests that are made by users who have been authenticated by the application.

If you start the application and request a URL that targets the Index action on the Home controller (/Home/Index,  
/Home, or just /), you will see the error shown by Figure 14-1.



Chapter 14 ■ Applying ASP.NET Identity

335

The ASP.NET platform provides some useful information about the user through the HttpContext object, which 
is used by the Authorize attribute to check the status of the current request and see whether the user has been 
authenticated. The HttpContext.User property returns an implementation of the IPrincipal interface, which is 
defined in the System.Security.Principal namespace. The IPrincipal interface defines the property and method 
shown in Table 14-3.

Figure 14-1.  Requesting a protected URL

Table 14-3.  The Members Defined by the IPrincipal Interface

Name Description

Identity Returns an implementation of the IIdentity interface that describes the user associated 
with the request.

IsInRole(role) Returns true if the user is a member of the specified role. See the “Authorizing Users with 
Roles” section for details of managing authorizations with roles.

The implementation of IIdentity interface returned by the IPrincipal.Identity property provides some basic, 
but useful, information about the current user through the properties I have described in Table 14-4.

Table 14-4.  The Properties Defined by the IIdentity Interface

Name Description

AuthenticationType Returns a string that describes the mechanism used to authenticate the user

IsAuthenticated Returns true if the user has been authenticated

Name Returns the name of the current user



Chapter 14 ■ Applying ASP.NET Identity

336

Tip■■  I n Chapter 15 I describe the implementation class that ASP.NET Identity uses for the IIdentity interface, which 
is called ClaimsIdentity.

ASP.NET Identity contains a module that handles the AuthenticateRequest life-cycle event, which I described 
in Chapter 3, and uses the cookies sent by the browser to establish whether the user has been authenticated. I’ll show 
you how these cookies are created shortly. If the user is authenticated, the ASP.NET framework module sets the value 
of the IIdentity.IsAuthenticated property to true and otherwise sets it to false. (I have yet to implement the 
feature that will allow users to authenticate, which means that the value of the IsAuthenticated property is always 
false in the example application.)

The Authorize module checks the value of the IsAuthenticated property and, finding that the user isn’t 
authenticated, sets the result status code to 401 and terminates the request. At this point, the ASP.NET Identity 
module intercepts the request and redirects the user to the /Account/Login URL. This is the URL that I defined in the 
IdentityConfig class, which I specified in Chapter 13 as the OWIN startup class, like this:
 
using Microsoft.AspNet.Identity;
using Microsoft.Owin;
using Microsoft.Owin.Security.Cookies;
using Owin;
using Users.Infrastructure;
 
namespace Users {
    public class IdentityConfig {
        public void Configuration(IAppBuilder app) {
 
            app.CreatePerOwinContext<AppUserManager>(AppUserManager.Create);
 
            app.UseCookieAuthentication(new CookieAuthenticationOptions {
                AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
                LoginPath = new PathString("/Account/Login"),
            });
        }
    }
} 
 

The browser requests the /Account/Login URL, but since it doesn’t correspond to any controller or action in the 
example project, the server returns a 404 – Not Found response, leading to the error message shown in Figure 14-1.

Preparing to Implement Authentication
Even though the request ends in an error message, the request in the previous section illustrates how the ASP.NET 
Identity system fits into the standard ASP.NET request life cycle. The next step is to implement a controller that will 
receive requests for the /Account/Login URL and authenticate the user. I started by adding a new model class to the 
UserViewModels.cs file, as shown in Listing 14-2.



Chapter 14 ■ Applying ASP.NET Identity

337

Listing 14-2.  Adding a New Model Class to the UserViewModels.cs File

using System.ComponentModel.DataAnnotations;
 
namespace Users.Models {
 
    public class CreateModel {
        [Required]
        public string Name { get; set; }
        [Required]
        public string Email { get; set; }
        [Required]
        public string Password { get; set; }
    }
 
    public class LoginModel {
        [Required]
        public string Name { get; set; }
        [Required]
        public string Password { get; set; }
    }
}
 

The new model has Name and Password properties, both of which are decorated with the Required attribute so 
that I can use model validation to check that the user has provided values.

Tip■■  I n a real project, I would use client-side validation to check that the user has provided name and password 
values before submitting the form to the server, but I am going to keep things focused on Identity and the server-side 
functionality in this chapter. See Pro ASP.NET MVC 5 for details of client-side form validation.

I added an Account controller to the project, as shown in Listing 14-3, with Login action methods to collect and 
process the user’s credentials. I have not implemented the authentication logic in the listing because I am going to 
define the view and then walk through the process of validating user credentials and signing users into the application.

Listing 14-3.  The Contents of the AccountController.cs File

using System.Threading.Tasks;
using System.Web.Mvc;
using Users.Models;
 
namespace Users.Controllers {
 
    [Authorize]
    public class AccountController : Controller {
 
        [AllowAnonymous]
        public ActionResult Login(string returnUrl) {
            if (ModelState.IsValid) {
            }



Chapter 14 ■ Applying ASP.NET Identity

338

            ViewBag.returnUrl = returnUrl;
            return View();
        }
 
        [HttpPost]
        [AllowAnonymous]
        [ValidateAntiForgeryToken]
        public async Task<ActionResult> Login(LoginModel details, string returnUrl) {
            return View(details);
        }
    }
}
 

Even though it doesn’t authenticate users yet, the Account controller contains some useful infrastructure that  
I want to explain separately from the ASP.NET Identity code that I’ll add to the Login action method shortly.

First, notice that both versions of the Login action method take an argument called returnUrl. When a user 
requests a restricted URL, they are redirected to the /Account/Login URL with a query string that specifies the URL 
that the user should be sent back to once they have been authenticated. You can see this if you start the application 
and request the /Home/Index URL. Your browser will be redirected, like this: 

/Account/Login?ReturnUrl=%2FHome%2FIndex 

The value of the ReturnUrl query string parameter allows me to redirect the user so that navigating between 
open and secured parts of the application is a smooth and seamless process.

Next, notice the attributes that I have applied to the Account controller. Controllers that manage user accounts 
contain functionality that should be available only to authenticated users, such as password reset, for example. To that 
end, I have applied the Authorize attribute to the controller class and then used the AllowAnonymous attribute on the 
individual action methods. This restricts action methods to authenticated users by default but allows unauthenticated 
users to log in to the application.

Finally, I have applied the ValidateAntiForgeryToken attribute, which works in conjunction with the Html.
AntiForgeryToken helper method in the view and guards against cross-site request forgery. Cross-site forgery exploits 
the trust that your user has for your application and it is especially important to use the helper and attribute for 
authentication requests.

Tip■■  Y ou can learn more about cross-site request forgery at http://en.wikipedia.org/wiki/Cross-site_request_forgery.

My last preparatory step is to create the view that will be rendered to gather credentials from the user. Listing 14-4 
shows the contents of the Views/Account/Login.cshtml file, which I created by right-clicking the Index action method 
and selecting Add View from the pop-up menu.

Listing 14-4.  The Contents of the Login.cshtml File

@model Users.Models.LoginModel
@{ ViewBag.Title = "Login";}
<h2>Log In</h2>
 
@Html.ValidationSummary()
 

http://en.wikipedia.org/wiki/Cross-site_request_forgery


Chapter 14 ■ Applying ASP.NET Identity

339

@using (Html.BeginForm()) {
    @Html.AntiForgeryToken();
    <input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" />
    <div class="form-group">
        <label>Name</label>
        @Html.TextBoxFor(x => x.Name, new { @class = "form-control" })
    </div>
    <div class="form-group">
        <label>Password</label>
        @Html.PasswordFor(x => x.Password, new { @class = "form-control" })
    </div>
    <button class="btn btn-primary" type="submit">Log In</button>
}
 

The only notable aspects of this view are using the Html.AntiForgeryToken helper and creating a hidden input 
element to preserve the returnUrl argument. In all other respects, this is a standard Razor view, but it completes 
the preparations for authentication and demonstrates the way that unauthenticated requests are intercepted and 
redirected. To test the new controller, start the application and request the /Home/Index URL. You will be redirected to 
the /Account/Login URL, as shown in Figure 14-2.

Figure 14-2.  Prompting the user for authentication credentials

Adding User Authentication
Requests for protected URLs are being correctly redirected to the Account controller, but the credentials provided by 
the user are not yet used for authentication. In Listing 14-5, you can see how I have completed the implementation  
of the Login action.



Chapter 14 ■ Applying ASP.NET Identity

340

Listing 14-5.  Adding Authentication to the AccountController.cs File

using System.Threading.Tasks;
using System.Web.Mvc;
using Users.Models;
using Microsoft.Owin.Security;
using System.Security.Claims;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using System.Web;
 
namespace Users.Controllers {
 
    [Authorize]
    public class AccountController : Controller {
 
        [AllowAnonymous]
        public ActionResult Login(string returnUrl) {
            ViewBag.returnUrl = returnUrl;
            return View();
        }
 
        [HttpPost]
        [AllowAnonymous]
        [ValidateAntiForgeryToken]
        public async Task<ActionResult> Login(LoginModel details, string returnUrl) {
            if (ModelState.IsValid) {
                AppUser user = await UserManager.FindAsync(details.Name,
                    details.Password);
                if (user == null) {
                    ModelState.AddModelError("", "Invalid name or password.");
                } else {
                    ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,
                        DefaultAuthenticationTypes.ApplicationCookie);
                    AuthManager.SignOut();
                    AuthManager.SignIn(new AuthenticationProperties {
                        IsPersistent = false}, ident);
                    return Redirect(returnUrl);
                }
            }
            ViewBag.returnUrl = returnUrl;
            return View(details);
        }
 
        private IAuthenticationManager AuthManager {
            get {
                return HttpContext.GetOwinContext().Authentication;
            }
        }
 



Chapter 14 ■ Applying ASP.NET Identity

341

        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
    }
}
 

The simplest part is checking the credentials, which I do through the FindAsync method of the AppUserManager 
class, which you will remember as the user manager class from Chapter 13:
 
...
AppUser user = await UserManager.FindAsync(details.Name, details.Password);
...
 

I will be using the AppUserManager class repeatedly in the Account controller, so I defined a property called 
UserManager that returns the instance of the class using the GetOwinContext extension method for the HttpContext 
class, just as I did for the Admin controller in Chapter 13.

The FindAsync method takes the account name and password supplied by the user and returns an instance of the 
user class (AppUser in the example application) if the user account exists and if the password is correct. If there is no 
such account or the password doesn’t match the one stored in the database, then the FindAsync method returns null, 
in which case I add an error to the model state that tells the user that something went wrong.

If the FindAsync method does return an AppUser object, then I need to create the cookie that the browser will 
send in subsequent requests to show they are authenticated. Here are the relevant statements:
 
...
ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,
    DefaultAuthenticationTypes.ApplicationCookie);
AuthManager.SignOut();
AuthManager.SignIn(new AuthenticationProperties {IsPersistent = false}, ident);
return Redirect(returnUrl);
...
 

The first step is to create a ClaimsIdentity object that identifies the user. The ClaimsIdentity class is the  
ASP.NET Identity implementation of the IIdentity interface that I described in Table 14-4 and that you can see used 
in the “Using Roles for Authorization” section later in this chapter.

Tip■■  D on’t worry about why the class is called ClaimsIdentity at the moment. I explain what claims are and how 
they can be used in Chapter 15.

Instances of ClaimsIdentity are created by calling the user manager CreateIdentityAsync method, passing in 
a user object and a value from the DefaultAuthenticationTypes enumeration. The ApplicationCookie value is used 
when working with individual user accounts.

The next step is to invalidate any existing authentication cookies and create the new one. I defined the 
AuthManager property in the controller because I’ll need access to the object it provides repeatedly as I build the 
functionality in this chapter. The property returns an implementation of the IAuthenticationManager interface that 
is responsible for performing common authentication options. I have described the most useful methods provided by 
the IAuthenticationManager interface in Table 14-5.



Chapter 14 ■ Applying ASP.NET Identity

342

The arguments to the SignIn method are an AuthenticationProperties object that configures the 
authentication process and the ClaimsIdentity object. I set the IsPersistent property defined by the 
AuthenticationProperties object to true to make the authentication cookie persistent at the browser, meaning that 
the user doesn’t have to authenticate again when starting a new session. (There are other properties defined by the 
AuthenticationProperties class, but the IsPersistent property is the only one that is widely used at the moment.)

The final step is to redirect the user to the URL they requested before the authentication process started, which I 
do by calling the Redirect method.

CONSIDERING TWO-FACTOR AUTHENTICATION

I have performed single-factor authentication in this chapter, which is where the user is able to authenticate using 
a single piece of information known to them in advance: the password.

ASP.NET Identity also supports two-factor authentication, where the user needs something extra, usually 
something that is given to the user at the moment they want to authenticate. The most common examples 
are a value from a SecureID token or an authentication code that is sent as an e-mail or text message (strictly 
speaking, the two factors can be anything, including fingerprints, iris scans, and voice recognition, although these 
are options that are rarely required for most web applications).

Security is increased because an attacker needs to know the user’s password and have access to whatever 
provides the second factor, such an e-mail account or cell phone.

I don’t show two-factor authentication in the book for two reasons. The first is that it requires a lot of preparatory 
work, such as setting up the infrastructure that distributes the second-factor e-mails and texts and implementing 
the validation logic, all of which is beyond the scope of this book.

The second reason is that two-factor authentication forces the user to remember to jump through an additional 
hoop to authenticate, such as remembering their phone or keeping a security token nearby, something that isn’t 
always appropriate for web applications. I carried a SecureID token of one sort or another for more than a decade 
in various jobs, and I lost count of the number of times that I couldn’t log in to an employer’s system because I left 
the token at home.

If you are interested in two-factor security, then I recommend relying on a third-party provider such as Google for 
authentication, which allows the user to choose whether they want the additional security (and inconvenience) 
that two-factor authentication provides. I demonstrate third-party authentication in Chapter 15.

Table 14-5.  The Most Useful Methods Defined by the IAuthenticationManager Interface

Name Description

SignIn(options, identity) Signs the user in, which generally means creating the cookie that identifies 
authenticated requests

SignOut() Signs the user out, which generally means invalidating the cookie that identifies 
authenticated requests



Chapter 14 ■ Applying ASP.NET Identity

343

Testing Authentication
To test user authentication, start the application and request the /Home/Index URL. When redirected to the /Account/
Login URL, enter the details of one of the users I listed at the start of the chapter (for instance, the name joe and the 
password MySecret). Click the Log In button, and your browser will be redirected back to the /Home/Index URL, but 
this time it will submit the authentication cookie that grants it access to the action method, as shown in Figure 14-3.

Figure 14-3.  Authenticating a user

Tip■■  Y ou can use the browser F12 tools to see the cookies that are used to identify authenticated requests.

Table 14-6.  Putting Authorization in Context

Question Answer

What is it? Authorization is the process of granting access to controllers and action 
methods to certain users, generally based on role membership.

Why should I care? Without roles, you can differentiate only between users who are 
authenticated and those who are not. Most applications will have 
different types of users, such as customers and administrators.

How is it used by the MVC framework? Roles are used to enforce authorization through the Authorize attribute, 
which is applied to controllers and action methods.

Authorizing Users with Roles
In the previous section, I applied the Authorize attribute in its most basic form, which allows any authenticated user 
to execute the action method. In this section, I will show you how to refine authorization to give finer-grained control 
over which users can perform which actions. Table 14-6 puts authorization in context.



Chapter 14 ■ Applying ASP.NET Identity

344

Tip■■  I n Chapter 15, I show you a different approach to authorization using claims, which are an advanced ASP.NET 
Identity feature.

Table 14-7.  The Properties Defined by the IdentityRole Class

Name Description

Id Defines the unique identifier for the role

Name Defines the name of the role

Users Returns a collection of IdentityUserRole objects 
that represents the members of the role

Adding Support for Roles
ASP.NET Identity provides a strongly typed base class for accessing and managing roles called RoleManager<T>, where 
T is the implementation of the IRole interface supported by the storage mechanism used to represent roles. The Entity 
Framework uses a class called IdentityRole to implement the IRole interface, which defines the properties shown  
in Table 14-7.

I don’t want to leak references to the IdentityRole class throughout my application because it ties me to the 
Entity Framework for storing role data, so I start by creating an application-specific role class that is derived from 
IdentityRole. I added a class file called AppRole.cs to the Models folder and used it to define the class shown  
in Listing 14-6.

Listing 14-6  The Contents of the AppRole.cs File

using Microsoft.AspNet.Identity.EntityFramework;
 
namespace Users.Models {
    public class AppRole : IdentityRole {
 
        public AppRole() : base() {}
 
        public AppRole(string name) : base(name) { }
    }
}
 

The RoleManager<T> class operates on instances of the IRole implementation class through the methods and 
properties shown in Table 14-8.



Chapter 14 ■ Applying ASP.NET Identity

345

These methods follow the same basic pattern of the UserManager<T> class that I described in Chapter 13. 
Following the pattern I used for managing users, I added a class file called AppRoleManager.cs to the Infrastructure 
folder and used it to define the class shown in Listing 14-7.

Listing 14-7  The Contents of the AppRoleManager.cs File

using System;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Users.Models;
 
namespace Users.Infrastructure {
 
    public class AppRoleManager : RoleManager<AppRole>, IDisposable {
 
        public AppRoleManager(RoleStore<AppRole> store)
            : base(store) {
        }
 
        public static AppRoleManager Create(
                IdentityFactoryOptions<AppRoleManager> options,
                IOwinContext context) {
            return new AppRoleManager(new
                RoleStore<AppRole>(context.Get<AppIdentityDbContext>()));
        }
    }
}
 

This class defines a Create method that will allow the OWIN start class to create instances for each request where 
Identity data is accessed, which means I don’t have to disseminate details of how role data is stored throughout the 
application. I can just obtain and operate on instances of the AppRoleManager class. You can see how I have registered 
the role manager class with the OWIN start class, IdentityConfig, in Listing 14-8. This ensures that instances 
of the AppRoleManager class are created using the same Entity Framework database context that is used for the 
AppUserManager class.

Table 14-8.  The Members Defined by the RoleManager<T> Class

Name Description

CreateAsync(role) Creates a new role

DeleteAsync(role) Deletes the specified role

FindByIdAsync(id) Finds a role by its ID

FindByNameAsync(name) Finds a role by its name

RoleExistsAsync(name) Returns true if a role with the specified name exists

UpdateAsync(role) Stores changes to the specified role

Roles Returns an enumeration of the roles that have been defined



Chapter 14 ■ Applying ASP.NET Identity

346

Listing 14-8.  Creating Instances of the AppRoleManager Class in the IdentityConfig.cs File

using Microsoft.AspNet.Identity;
using Microsoft.Owin;
using Microsoft.Owin.Security.Cookies;
using Owin;
using Users.Infrastructure;
 
namespace Users {
    public class IdentityConfig {
        public void Configuration(IAppBuilder app) {
 
            app.CreatePerOwinContext<AppIdentityDbContext>(AppIdentityDbContext.Create);
            app.CreatePerOwinContext<AppUserManager>(AppUserManager.Create);
            app.CreatePerOwinContext<AppRoleManager>(AppRoleManager.Create);
 
            app.UseCookieAuthentication(new CookieAuthenticationOptions {
                AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
                LoginPath = new PathString("/Account/Login"),
            });
        }
    }
} 

Creating and Deleting Roles
Having prepared the application for working with roles, I am going to create an administration tool for managing 
them. I will start the basics and define action methods and views that allow roles to be created and deleted. I added  
a controller called RoleAdmin to the project, which you can see in Listing 14-9.

Listing 14-9.  The Contents of the RoleAdminController.cs File

using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Threading.Tasks;
using System.Web;
using System.Web.Mvc;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using Users.Models;
 
namespace Users.Controllers {
    public class RoleAdminController : Controller {
 
        public ActionResult Index() {
            return View(RoleManager.Roles);
        }
 
        public ActionResult Create() {
            return View();
        }
 



Chapter 14 ■ Applying ASP.NET Identity

347

        [HttpPost]
        public async Task<ActionResult> Create([Required]string name) {
            if (ModelState.IsValid) {
                IdentityResult result
                    = await RoleManager.CreateAsync(new AppRole(name));
                if (result.Succeeded) {
                    return RedirectToAction("Index");
                } else {
                    AddErrorsFromResult(result);
                }
            }
            return View(name);
        }
 
        [HttpPost]
        public async Task<ActionResult> Delete(string id) {
            AppRole role = await RoleManager.FindByIdAsync(id);
            if (role != null) {
                IdentityResult result = await RoleManager.DeleteAsync(role);
                if (result.Succeeded) {
                    return RedirectToAction("Index");
                } else {
                    return View("Error", result.Errors);
                }
            } else {
                return View("Error", new string[] { "Role Not Found" });
            }
        }
 
        private void AddErrorsFromResult(IdentityResult result) {
            foreach (string error in result.Errors) {
                ModelState.AddModelError("", error);
            }
        }
 
        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
 
        private AppRoleManager RoleManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppRoleManager>();
            }
        }
    }
}
 



Chapter 14 ■ Applying ASP.NET Identity

348

I have applied many of the same techniques that I used in the Admin controller in Chapter 13, including a 
UserManager property that obtains an instance of the AppUserManager class and an AddErrorsFromResult method 
that processes the errors reported in an IdentityResult object and adds them to the model state.

I have also defined a RoleManager property that obtains an instance of the AppRoleManager class, which I used 
in the action methods to obtain and manipulate the roles in the application. I am not going to describe the action 
methods in detail because they follow the same pattern I used in Chapter 13, using the AppRoleManager class in place 
of AppUserManager and calling the methods I described in Table 14-8.

Creating the Views
The views for the RoleAdmin controller are standard HTML and Razor markup, but I have included them in this 
chapter so that you can re-create the example. I want to display the names of the users who are members of each role. 
The Entity Framework IdentityRole class defines a Users property that returns a collection of IdentityUserRole 
user objects representing the members of the role. Each IdentityUserRole object has a UserId property that returns 
the unique ID of a user, and I want to get the username for each ID. I added a class file called IdentityHelpers.cs to 
the Infrastructure folder and used it to define the class shown in Listing 14-10.

Listing 14-10.  The Contents of the IdentityHelpers.cs File

using System.Web;
using System.Web.Mvc;
using Microsoft.AspNet.Identity.Owin;
 
namespace Users.Infrastructure {
    public static class IdentityHelpers {
        public static MvcHtmlString GetUserName(this HtmlHelper html, string id) {
            AppUserManager mgr
                =  HttpContext.Current.GetOwinContext().GetUserManager<AppUserManager>();
            return new MvcHtmlString(mgr.FindByIdAsync(id).Result.UserName);
        }
    }
}
 

Custom HTML helper methods are defined as extensions on the HtmlHelper class. My helper, which is called 
GetUsername, takes a string argument containing a user ID, obtains an instance of the AppUserManager through the 
GetOwinContext.GetUserManager method (where GetOwinContext is an extension method on the HttpContext 
class), and uses the FindByIdAsync method to locate the AppUser instance associated with the ID and to return the 
value of the UserName property.

Listing 14-11 shows the contents of the Index.cshtml file from the Views/RoleAdmin folder, which I created by 
right-clicking the Index action method in the code editor and selecting Add View from the pop-up menu.

Listing 14-11.  The Contents of the Index.cshtml File in the Views/RoleAdmin Folder

@using Users.Models
@using Users.Infrastructure
@model IEnumerable<AppRole>
@{ ViewBag.Title = "Roles"; }
<div class="panel panel-primary">
    <div class="panel-heading">Roles</div>
    <table class="table table-striped">
        <tr><th>ID</th><th>Name</th><th>Users</th><th></th></tr>
        @if (Model.Count() == 0) {



Chapter 14 ■ Applying ASP.NET Identity

349

            <tr><td colspan="4" class="text-center">No Roles</td></tr>
        } else {
            foreach (AppRole role in Model) {
                <tr>
                    <td>@role.Id</td>
                    <td>@role.Name</td>
                    <td>
                        @if (role.Users == null || role.Users.Count == 0) {
                            @: No Users in Role
                        } else {
                            <p>@string.Join(", ", role.Users.Select(x =>
                                Html.GetUserName(x.UserId)))</p>
                        }
                    </td>
                    <td>
                        @using (Html.BeginForm("Delete", "RoleAdmin",
                            new { id = role.Id })) {
                            @Html.ActionLink("Edit", "Edit", new { id = role.Id },
                                    new { @class = "btn btn-primary btn-xs" })
                            <button class="btn btn-danger btn-xs"
                                    type="submit">
                                Delete
                            </button>
                        }
                    </td>
                </tr>
            }
        }
    </table>
</div>
@Html.ActionLink("Create", "Create", null, new { @class = "btn btn-primary" })
 

This view displays a list of the roles defined by the application, along with the users who are members, and I use 
the GetUserName helper method to get the name for each user.

Listing 14-12 shows the Views/RoleAdmin/Create.cshtml file, which I created to allow new roles to be created.

Listing 14-12.  The Contents of the Create.cshtml File in the Views/RoleAdmin Folder

@model string
@{ ViewBag.Title = "Create Role";}
<h2>Create Role</h2>
@Html.ValidationSummary(false)
@using (Html.BeginForm()) {
    <div class="form-group">
        <label>Name</label>
        <input name="name" value="@Model" class="form-control" />
    </div>
    <button type="submit" class="btn btn-primary">Create</button>
    @Html.ActionLink("Cancel", "Index", null, new { @class = "btn btn-default" })
}
 

The only information required to create a new view is a name, which I gather using a standard input element and 
submit the value to the Create action method.



Chapter 14 ■ Applying ASP.NET Identity

350

Testing Creating and Deleting Roles
To test the new controller, start the application and navigate to the /RoleAdmin/Index URL. To create a new role, click 
the Create button, enter a name in the input element, and click the second Create button. The new view will be saved 
to the database and displayed when the browser is redirected to the Index action, as shown in Figure 14-4. You can 
remove the role from the application by clicking the Delete button.

Figure 14-4.  Creating a new role

Managing Role Memberships
To authorize users, it isn’t enough to just create and delete roles; I also have to be able to manage role memberships, 
assigning and removing users from the roles that the application defines. This isn’t a complicated process, 
but it invokes taking the role data from the AppRoleManager class and then calling the methods defined by the 
AppUserMangager class that associate users with roles.

I started by defining view models that will let me represent the membership of a role and receive a new set of 
membership instructions from the user. Listing 14-13 shows the additions I made to the UserViewModels.cs file.

Listing 14-13.  Adding View Models to the UserViewModels.cs File

using System.ComponentModel.DataAnnotations;
using System.Collections.Generic;
 
namespace Users.Models {
 
    public class CreateModel {
        [Required]
        public string Name { get; set; }
        [Required]
        public string Email { get; set; }
        [Required]
        public string Password { get; set; }
    }
 



Chapter 14 ■ Applying ASP.NET Identity

351

    public class LoginModel {
        [Required]
        public string Name { get; set; }
        [Required]
        public string Password { get; set; }
    }
 
    public class RoleEditModel {
        public AppRole Role { get; set; }
        public IEnumerable<AppUser> Members { get; set; }
        public IEnumerable<AppUser> NonMembers { get; set; }
    }
 
    public class RoleModificationModel {
        [Required]
        public string RoleName { get; set; }
        public string[] IdsToAdd { get; set; }
        public string[] IdsToDelete { get; set; }
    }
}
 

The RoleEditModel class will let me pass details of a role and details of the users in the system, categorized by 
membership. I use AppUser objects in the view model so that I can extract the name and ID for each user in the view 
that will allow memberships to be edited. The RoleModificationModel class is the one that I will receive from the 
model binding system when the user submits their changes. It contains arrays of user IDs rather than AppUser objects, 
which is what I need to change role memberships.

Having defined the view models, I can add the action methods to the controller that will allow role memberships 
to be defined. Listing 14-14 shows the changes I made to the RoleAdmin controller.

Listing 14-14.  Adding Action Methods in the RoleAdminController.cs File

using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Threading.Tasks;
using System.Web;
using System.Web.Mvc;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using Users.Models;
using System.Collections.Generic;
 
namespace Users.Controllers {
    public class RoleAdminController : Controller {
 
        // ...other action methods omitted for brevity...
 
        public async Task<ActionResult> Edit(string id) {
            AppRole role = await RoleManager.FindByIdAsync(id);
            string[] memberIDs = role.Users.Select(x => x.UserId).ToArray();
            IEnumerable<AppUser> members
                = UserManager.Users.Where(x => memberIDs.Any(y => y == x.Id));



Chapter 14 ■ Applying ASP.NET Identity

352

            IEnumerable<AppUser> nonMembers = UserManager.Users.Except(members);
            return View(new RoleEditModel {
                Role = role,
                Members = members,
                NonMembers = nonMembers
            });
        }
 
        [HttpPost]
        public async Task<ActionResult> Edit(RoleModificationModel model) {
            IdentityResult result;
            if (ModelState.IsValid) {
                foreach (string userId in model.IdsToAdd ?? new string[] { }) {
                    result = await UserManager.AddToRoleAsync(userId, model.RoleName);
                    if (!result.Succeeded) {
                        return View("Error", result.Errors);
                    }
                }
                foreach (string userId in model.IdsToDelete ?? new string[] { }) {
                    result = await UserManager.RemoveFromRoleAsync(userId,
                        model.RoleName);
                    if (!result.Succeeded) {
                        return View("Error", result.Errors);
                    }
                }
                return RedirectToAction("Index");
            }
            return View("Error", new string[] { "Role Not Found" });
        }
 
        private void AddErrorsFromResult(IdentityResult result) {
            foreach (string error in result.Errors) {
                ModelState.AddModelError("", error);
            }
        }
 
        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
 
        private AppRoleManager RoleManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppRoleManager>();
            }
        }
    }
}
 



Chapter 14 ■ Applying ASP.NET Identity

353

The majority of the code in the GET version of the Edit action method is responsible for generating the sets of 
members and nonmembers of the selected role, which is done using LINQ. Once I have grouped the users, I call the 
View method, passing a new instance of the RoleEditModel class I defined in Listing 14-13.

The POST version of the Edit method is responsible for adding and removing users to and from roles. The 
AppUserManager class inherits a number of role-related methods from its base class, which I have described in Table 14-9.

Table 14-9.  The Role-Related Methods Defined by the UserManager<T> Class

Name Description

AddToRoleAsync(id, name) Adds the user with the specified ID to the role with the specified name

GetRolesAsync(id) Returns a list of the names of the roles of which the user with the specified 
ID is a member

IsInRoleAsync(id, name) Returns true if the user with the specified ID is a member of the role with 
the specified name

RemoveFromRoleAsync(id, name) Removes the user with the specified ID as a member from the role with 
the specified name

An oddity of these methods is that the role-related methods operate on user IDs and role names, even though 
roles also have unique identifiers. It is for this reason that my RoleModificationModel view model class has a 
RoleName property.

Listing 14-15 shows the view for the Edit.cshtml file, which I added to the Views/RoleAdmin folder and used to 
define the markup that allows the user to edit role memberships.

Listing 14-15.  The Contents of the Edit.cshtml File in the Views/RoleAdmin Folder

@using Users.Models
@model RoleEditModel
@{ ViewBag.Title = "Edit Role";}
@Html.ValidationSummary()
@using (Html.BeginForm()) {
    <input type="hidden" name="roleName" value="@Model.Role.Name" />
    <div class="panel panel-primary">
        <div class="panel-heading">Add To @Model.Role.Name</div>
        <table class="table table-striped">
            @if (Model.NonMembers.Count() == 0) {
                <tr><td colspan="2">All Users Are Members</td></tr>
            } else {
                <tr><td>User ID</td><td>Add To Role</td></tr>
                foreach (AppUser user in Model.NonMembers) {
                    <tr>
                        <td>@user.UserName</td>
                        <td>
                            <input type="checkbox" name="IdsToAdd" value="@user.Id">
                        </td>
                    </tr>
                }
            }
        </table>
    </div>



Chapter 14 ■ Applying ASP.NET Identity

354

    <div class="panel panel-primary">
        <div class="panel-heading">Remove from @Model.Role.Name</div>
        <table class="table table-striped">
            @if (Model.Members.Count() == 0) {
                <tr><td colspan="2">No Users Are Members</td></tr>
            } else {
                <tr><td>User ID</td><td>Remove From Role</td></tr>
                foreach (AppUser user in Model.Members) {
                    <tr>
                        <td>@user.UserName</td>
                        <td>
                            <input type="checkbox" name="IdsToDelete" value="@user.Id">
                        </td>
                    </tr>
                }
            }
        </table>
    </div>
    <button type="submit" class="btn btn-primary">Save</button>
    @Html.ActionLink("Cancel", "Index", null, new { @class = "btn btn-default" })
}
 

The view contains two tables: one for users who are not members of the selected role and one for those who are 
members. Each user’s name is displayed along with a check box that allows the membership to be changed.

Testing Editing Role Membership
Adding the AppRoleManager class to the application causes the Entity Framework to delete the contents of the 
database and rebuild the schema, which means that any users you created in the previous chapter have been 
removed. So that there are users to assign to roles, start the application and navigate to the /Admin/Index URL and 
create users with the details in Table 14-10.

Table 14-10.  The Values for Creating Example User

Name Email Password

Alice alice@example.com MySecret

Bob bob@example.com MySecret

Joe joe@example.com MySecret

Tip■■  D eleting the user database is fine for an example application but tends to be a problem in real applications.  
I show you how to gracefully manage changes to the database schema in Chapter 15.

To test managing role memberships, navigate to the /RoleAdmin/Index URL and create a role called Users, 
following the instructions from the “Testing, Creating, and Deleting Roles” section. Click the Edit button and check 
the boxes so that Alice and Joe are members of the role but Bob is not, as shown in Figure 14-5.

http://alice@example.com
http://bob@example.com
http://joe@example.com


Chapter 14 ■ Applying ASP.NET Identity

355

Tip■■  I f you get an error that tells you there is already an open a data reader, then you didn’t set the  
MultipleActiveResultSets setting to true in the connection string in Chapter 13.

Click the Save button, and the controller will update the role memberships and redirect the browser to the Index 
action. The summary of the Users role will show that Alice and Joe are now members, as illustrated by Figure 14-6.

Figure 14-5.  Editing role membership



Chapter 14 ■ Applying ASP.NET Identity

356

Using Roles for Authorization
Now that I have the ability to manage roles, I can use them as the basis for authorization through the Authorize 
attribute. To make it easier to test role-based authorization, I have added a Logout method to the Account controller, 
as shown in Listing 14-16, which will make it easier to log out and log in again as a different user to see the effect of 
role membership.

Listing 14-16.  Adding a Logout Method to the AccountController.cs File

using System.Threading.Tasks;
using System.Web.Mvc;
using Users.Models;
using Microsoft.Owin.Security;
using System.Security.Claims;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using System.Web;
 
namespace Users.Controllers {
 
    [Authorize]
    public class AccountController : Controller {
 
        [AllowAnonymous]
        public ActionResult Login(string returnUrl) {
            ViewBag.returnUrl = returnUrl;
            return View();
        }
 
        [HttpPost]
        [AllowAnonymous]
        [ValidateAntiForgeryToken]

Figure 14-6.  The effect of adding users to a role



Chapter 14 ■ Applying ASP.NET Identity

357

        public async Task<ActionResult> Login(LoginModel details, string returnUrl) {
            // ...statements omitted for brevity...
        }
 
        [Authorize]
        public ActionResult Logout() {
            AuthManager.SignOut();
            return RedirectToAction("Index", "Home");
        }
 
        private IAuthenticationManager AuthManager {
            get {
                return HttpContext.GetOwinContext().Authentication;
            }
        }
 
        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
    }
}
 

I have updated the Home controller to add a new action method and pass some information about the 
authenticated user to the view, as shown in Listing 14-17.

Listing 14-17.  Adding an Action Method and Account Information to the HomeController.cs File

using System.Web.Mvc;
using System.Collections.Generic;
using System.Web;
using System.Security.Principal;
 
namespace Users.Controllers {
 
    public class HomeController : Controller {
 
        [Authorize]
        public ActionResult Index() {
            return View(GetData("Index"));
        }
 
        [Authorize(Roles="Users")]
        public ActionResult OtherAction() {
            return View("Index", GetData("OtherAction"));
        }
 
        private Dictionary<string, object> GetData(string actionName) {
            Dictionary<string, object> dict
                = new Dictionary<string, object>();



Chapter 14 ■ Applying ASP.NET Identity

358

            dict.Add("Action", actionName);
            dict.Add("User", HttpContext.User.Identity.Name);
            dict.Add("Authenticated", HttpContext.User.Identity.IsAuthenticated);
            dict.Add("Auth Type", HttpContext.User.Identity.AuthenticationType);
            dict.Add("In Users Role", HttpContext.User.IsInRole("Users"));
            return dict;
        }
    }
}
 

I have left the Authorize attribute unchanged for the Index action method, but I have set the Roles property 
when applying the attribute to the OtherAction method, specifying that only members of the Users role should be 
able to access it. I also defined a GetData method, which adds some basic information about the user identity, using 
the properties available through the HttpContext object. The final change I made was to the Index.cshtml file in the 
Views/Home folder, which is used by both actions in the Home controller, to add a link that targets the Logout method in 
the Account controller, as shown in Listing 14-18.

Listing 14-18.  Adding a Sign-Out Link to the Index.cshtml File in the Views/Home Folder

@{ ViewBag.Title = "Index"; }
 
<div class="panel panel-primary">
    <div class="panel-heading">User Details</div>
    <table class="table table-striped">
        @foreach (string key in Model.Keys) {
            <tr>
                <th>@key</th>
                <td>@Model[key]</td>
            </tr>
        }
    </table>
</div>
 
@Html.ActionLink("Sign Out", "Logout", "Account", null, new {@class = "btn btn-primary"}) 

Tip■■  T he Authorize attribute can also be used to authorize access based on a list of individual usernames. This is an 
appealing feature for small projects, but it means you have to change the code in your controllers each time the set of 
users you are authorizing changes, and that usually means having to go through the test-and-deploy cycle again. Using 
roles for authorization isolates the application from changes in individual user accounts and allows you to control access 
to the application through the memberships stored by ASP.NET Identity.

To test the authentication, start the application and navigate to the /Home/Index URL. Your browser will be 
redirected so that you can enter user credentials. It doesn’t matter which of the user details from Table 14-10 you 
choose to authenticate with because the Authorize attribute applied to the Index action allows access to any 
authenticated user.



Chapter 14 ■ Applying ASP.NET Identity

359

However, if you now request the /Home/OtherAction URL, the user details you chose from Table 14-10 will make a 
difference because only Alice and Joe are members of the Users role, which is required to access the OtherAction method. 
If you log in as Bob, then your browser will be redirected so that you can be prompted for credentials once again.

Redirecting an already authenticated user for more credentials is rarely a useful thing to do, so I have modified 
the Login action method in the Account controller to check to see whether the user is authenticated and, if so, redirect 
them to the shared Error view. Listing 14-19 shows the changes.

Listing 14-19.  Detecting Already Authenticated Users in the AccountController.cs File

using System.Threading.Tasks;
using System.Web.Mvc;
using Users.Models;
using Microsoft.Owin.Security;
using System.Security.Claims;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using System.Web;
 
namespace Users.Controllers {
 
    [Authorize]
    public class AccountController : Controller {
 
        [AllowAnonymous]
        public ActionResult Login(string returnUrl) {
            if (HttpContext.User.Identity.IsAuthenticated) {
                return View("Error", new string[] { "Access Denied" });
            }
            ViewBag.returnUrl = returnUrl;
            return View();
        }
 
        [HttpPost]
        [AllowAnonymous]
        [ValidateAntiForgeryToken]
        public async Task<ActionResult> Login(LoginModel details, string returnUrl) {
            // ...code omitted for brevity...
        }
 
        [Authorize]
        public ActionResult Logout() {
            AuthManager.SignOut();
            return RedirectToAction("Index", "Home");
        }
 
        private IAuthenticationManager AuthManager {
            get {
                return HttpContext.GetOwinContext().Authentication;
            }
        }
 



Chapter 14 ■ Applying ASP.NET Identity

360

        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
    }
}
 

Figure 14-7 shows the responses generated for the user Bob when requesting the /Home/Index and /Home/
OtherAction URLs.

Figure 14-7.  Using roles to control access to action methods

Tip■■  R oles are loaded when the user logs in, which means if you change the roles for the user you are currently 
authenticated as, the changes won’t take effect until you log out and authenticate.

Seeding the Database
One lingering problem in my example project is that access to my Admin and RoleAdmin controllers is not restricted. 
This is a classic chicken-and-egg problem because in order to restrict access, I need to create users and roles, but the 
Admin and RoleAdmin controllers are the user management tools, and if I protect them with the Authorize attribute, 
there won’t be any credentials that will grant me access to them, especially when I first deploy the application.

The solution to this problem is to seed the database with some initial data when the Entity Framework Code First 
feature creates the schema. This allows me to automatically create users and assign them to roles so that there is a 
base level of content available in the database.



Chapter 14 ■ Applying ASP.NET Identity

361

The database is seeded by adding statements to the PerformInitialSetup method of the IdentityDbInit class, 
which is the application-specific Entity Framework database setup class. Listing 14-20 shows the changes I made to 
create an administration user.

Listing 14-20.  Seeding the Database in the AppIdentityDbContext.cs File

using System.Data.Entity;
using Microsoft.AspNet.Identity.EntityFramework;
using Users.Models;
using Microsoft.AspNet.Identity;
 
namespace Users.Infrastructure {
    public class AppIdentityDbContext : IdentityDbContext<AppUser> {
 
        public AppIdentityDbContext() : base("IdentityDb") { }
 
        static AppIdentityDbContext() {
            Database.SetInitializer<AppIdentityDbContext>(new IdentityDbInit());
        }
 
        public static AppIdentityDbContext Create() {
            return new AppIdentityDbContext();
        }
    }
 
    public class IdentityDbInit
            : DropCreateDatabaseIfModelChanges<AppIdentityDbContext> {
        protected override void Seed(AppIdentityDbContext context) {
            PerformInitialSetup(context);
            base.Seed(context);
        }
 
        public void PerformInitialSetup(AppIdentityDbContext context) {
            AppUserManager userMgr = new AppUserManager(new UserStore<AppUser>(context));
            AppRoleManager roleMgr = new AppRoleManager(new RoleStore<AppRole>(context));
 
            string roleName = "Administrators";
            string userName = "Admin";
            string password = "MySecret";
            string email = "admin@example.com";
 
            if (!roleMgr.RoleExists(roleName)) {
                roleMgr.Create(new AppRole(roleName));
            }
 
            AppUser user = userMgr.FindByName(userName);
            if (user == null) {
                userMgr.Create(new AppUser { UserName = userName, Email = email },
                    password);
                user = userMgr.FindByName(userName);
            }
 

http://admin@example.com/


Chapter 14 ■ Applying ASP.NET Identity

362

            if (!userMgr.IsInRole(user.Id, roleName)) {
                userMgr.AddToRole(user.Id, roleName);
            }
        }
    }
} 

Tip■■   For this example, I used the synchronous extension methods to locate and manage the role and user.  
As I explained in Chapter 13, I prefer the asynchronous methods by default, but the synchronous methods can be useful 
when you need to perform a sequence of related operations.

I have to create instances of AppUserManager and AppRoleManager directly because the PerformInitialSetup 
method is called before the OWIN configuration is complete. I use the RoleManager and AppManager objects to create 
a role called Administrators and a user called Admin and add the user to the role.

Tip■■  R ead Chapter 15 before you add database seeding to your project. I describe database migrations, which allow 
you to take control of schema changes in the database and which put the seeding logic in a different place.

With this change, I can use the Authorize attribute to protect the Admin and RoleAdmin controllers. Listing 14-21 
shows the change I made to the Admin controller.

Listing 14-21.  Restricting Access in the AdminController.cs File

using System.Web;
using System.Web.Mvc;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using Users.Models;
using Microsoft.AspNet.Identity;
using System.Threading.Tasks;
 
namespace Users.Controllers {
 
    [Authorize(Roles = "Administrators")]
    public class AdminController : Controller {
        // ...statements omitted for brevity...
    }
}
 

Listing 14-22 shows the corresponding change I made to the RoleAdmin controller.

Listing 14-22.  Restricting Access in the RoleAdminController.cs File

using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Threading.Tasks;
using System.Web;



Chapter 14 ■ Applying ASP.NET Identity

363

using System.Web.Mvc;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using Users.Models;
using System.Collections.Generic;
 
namespace Users.Controllers {
 
    [Authorize(Roles = "Administrators")]
    public class RoleAdminController : Controller {
        // ...statements omitted for brevity...
    }
}
 

The database is seeded only when the schema is created, which means I need to reset the database to 
complete the process. This isn’t something you would do in a real application, of course, but I wanted to wait until I 
demonstrated how authentication and authorization worked before creating the administrator account.

To delete the database, open the Visual Studio SQL Server Object Explorer window and locate and right-click the 
IdentityDb item. Select Delete from the pop-up menu and check both of the options in the Delete Database dialog 
window. Click the OK button to delete the database.

Now create an empty database to which the schema will be added by right-clicking the Databases item, selecting 
Add New Database, and entering IdentityDb in the Database Name field. Click OK to create the empty database.

Tip■■  T here are step-by-step instructions with screenshots in Chapter 13 for creating the database.

Now start the application and request the /Admin/Index or /RoleAdmin/Index URL. There will be a delay while 
the schema is created and the database is seeded, and then you will be prompted to enter your credentials. Use Admin 
as the name and MySecret as the password, and you will be granted access to the controllers.

Caution■■  D eleting the database removes the user accounts you created using the details in Table 14-10, which is 
why you would not perform this task on a live database containing user details.

Summary
In this chapter, I showed you how to use ASP.NET Identity to authenticate and authorize users. I explained how the 
ASP.NET life-cycle events provide a foundation for authenticating requests, how to collect and validate credentials 
users, and how to restrict access to action methods based on the roles that a user is a member of. In the next chapter,  
I demonstrate some of the advanced features that ASP.NET Identity provides.



365

Chapter 15

Advanced ASP.NET Identity

In this chapter, I finish my description of ASP.NET Identity by showing you some of the advanced features it offers.  
I demonstrate how you can extend the database schema by defining custom properties on the user class and 
how to use database migrations to apply those properties without deleting the data in the ASP.NET Identity 
database. I also explain how ASP.NET Identity supports the concept of claims and demonstrate how they can be 
used to flexibly authorize access to action methods. I finish the chapter—and the book—by showing you how 
ASP.NET Identity makes it easy to authenticate users through third parties. I demonstrate authentication with 
Google accounts, but ASP.NET Identity has built-in support for Microsoft, Facebook, and Twitter accounts as well. 
Table 15-1 summarizes this chapter.

Table 15-1.  Chapter Summary

Problem Solution Listing

Store additional information about users. Define custom user properties. 1–3, 8–11

Update the database schema without  
deleting user data.

Perform a database migration. 4–7

Perform fine-grained authorization. Use claims. 12–14

Add claims about a user. Use the ClaimsIdentity.AddClaims method. 15–19

Authorize access based on claim values. Create a custom authorization filter attribute. 20–21

Authenticate through a third party. Install the NuGet package for the authentication  
provider, redirect requests to that provider, and specify  
a callback URL that creates the user account.

22–25

Preparing the Example Project
In this chapter, I am going to continue working on the Users project I created in Chapter 13 and enhanced in 
Chapter 14. No changes to the application are required, but start the application and make sure that there are users in 
the database. Figure 15-1 shows the state of my database, which contains the users Admin, Alice, Bob, and Joe from 
the previous chapter. To check the users, start the application and request the /Admin/Index URL and authenticate 
as the Admin user.



Chapter 15 ■ Advanced ASP.NET Identity

366

I also need some roles for this chapter. I used the RoleAdmin controller to create roles called Users and Employees 
and assigned the users to those roles, as described in Table 15-2.

Figure 15-1.  The initial users in the Identity database

Table 15-2.  The Types of Web Forms Code Nuggets

Role Members

Users Alice, Joe

Employees Alice, Bob

Figure 15-2 shows the required role configuration displayed by the RoleAdmin controller.



Chapter 15 ■ Advanced ASP.NET Identity

367

Adding Custom User Properties
When I created the AppUser class to represent users in Chapter 13, I noted that the base class defined a basic set of 
properties to describe the user, such as e-mail address and telephone number. Most applications need to store more 
information about users, including persistent application preferences and details such as addresses—in short, any 
data that is useful to running the application and that should last between sessions. In ASP.NET Membership, this was 
handled through the user profile system, but ASP.NET Identity takes a different approach.

Because the ASP.NET Identity system uses Entity Framework to store its data by default, defining additional user 
information is just a matter of adding properties to the user class and letting the Code First feature create the database 
schema required to store them. Table 15-3 puts custom user properties in context.

Figure 15-2.  Configuring the roles required for this chapter

Table 15-3.  Putting Cusotm User Properties in Context

Question Answer

What is it? Custom user properties allow you to store additional information 
about your users, including their preferences and settings.

Why should I care? A persistent store of settings means that the user doesn’t have to 
provide the same information each time they log in to the application.

How is it used by the MVC framework? This feature isn’t used directly by the MVC framework, but it is 
available for use in action methods.



Chapter 15 ■ Advanced ASP.NET Identity

368

Defining Custom Properties
Listing 15-1 shows how I added a simple property to the AppUser class to represent the city in which the user lives.

Listing 15-1.  Adding a Property in the AppUser.cs File

using System;
using Microsoft.AspNet.Identity.EntityFramework;
 
namespace Users.Models {
    public enum Cities {
        LONDON, PARIS, CHICAGO
    }
 
    public class AppUser : IdentityUser {
        public Cities City { get; set; }
    }
}
 

I have defined an enumeration called Cities that defines values for some large cities and added a property 
called City to the AppUser class. To allow the user to view and edit their City property, I added actions to the Home 
controller, as shown in Listing 15-2.

Listing 15-2.  Adding Support for Custom User Properties in the HomeController.cs File

using System.Web.Mvc;
using System.Collections.Generic;
using System.Web;
using System.Security.Principal;
using System.Threading.Tasks;
using Users.Infrastructure;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Users.Models;
 
namespace Users.Controllers {
 
    public class HomeController : Controller {
 
        [Authorize]
        public ActionResult Index() {
            return View(GetData("Index"));
        }
 
        [Authorize(Roles = "Users")]
        public ActionResult OtherAction() {
            return View("Index", GetData("OtherAction"));
        }
 



Chapter 15 ■ Advanced ASP.NET Identity

369

        private Dictionary<string, object> GetData(string actionName) {
            Dictionary<string, object> dict
                = new Dictionary<string, object>();
            dict.Add("Action", actionName);
            dict.Add("User", HttpContext.User.Identity.Name);
            dict.Add("Authenticated", HttpContext.User.Identity.IsAuthenticated);
            dict.Add("Auth Type", HttpContext.User.Identity.AuthenticationType);
            dict.Add("In Users Role", HttpContext.User.IsInRole("Users"));
            return dict;
        }
 
        [Authorize]
        public ActionResult UserProps() {
            return View(CurrentUser);
        }
 
        [Authorize]
        [HttpPost]
        public async Task<ActionResult> UserProps(Cities city) {
            AppUser user = CurrentUser;
            user.City = city;
            await UserManager.UpdateAsync(user);
            return View(user);
        }
 
        private AppUser CurrentUser {
            get {
                return UserManager.FindByName(HttpContext.User.Identity.Name);
            }
        }
 
        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
    }
}
 

I added a CurrentUser property that uses the AppUserManager class to retrieve an AppUser instance to 
represent the current user. I pass the AppUser object as the view model object in the GET version of the UserProps 
action method, and the POST method uses it to update the value of the new City property. Listing 15-3 shows the 
UserProps.cshtml view, which displays the City property value and contains a form to change it.

Listing 15-3.  The Contents of the UserProps.cshtml File in the Views/Home Folder

@using Users.Models
@model AppUser
@{ ViewBag.Title = "UserProps";}
 



Chapter 15 ■ Advanced ASP.NET Identity

370

<div class="panel panel-primary">
    <div class="panel-heading">
        Custom User Properties
    </div>
    <table class="table table-striped">
        <tr><th>City</th><td>@Model.City</td></tr>
    </table>
</div>
 
@using (Html.BeginForm()) {
    <div class="form-group">
        <label>City</label>
        @Html.DropDownListFor(x => x.City, new SelectList(Enum.GetNames(typeof(Cities))))
    </div>
    <button class="btn btn-primary" type="submit">Save</button>
}

 Caution■■  D on’t start the application when you have created the view. In the sections that follow, I demonstrate how 
to preserve the contents of the database, and if you start the application now, the ASP.NET Identity users will be deleted.

Preparing for Database Migration
The default behavior for the Entity Framework Code First feature is to drop the tables in the database and re-create 
them whenever classes that drive the schema have changed. You saw this in Chapter 14 when I added support for 
roles: When the application was started, the database was reset, and the user accounts were lost.

Don’t start the application yet, but if you were to do so, you would see a similar effect. Deleting data during 
development is usually not a problem, but doing so in a production setting is usually disastrous because it deletes all 
of the real user accounts and causes a panic while the backups are restored. In this section, I am going to demonstrate 
how to use the database migration feature, which updates a Code First schema in a less brutal manner and preserves 
the existing data it contains.

The first step is to issue the following command in the Visual Studio Package Manager Console: 

Enable-Migrations –EnableAutomaticMigrations

This enables the database migration support and creates a Migrations folder in the Solution Explorer that 
contains a Configuration.cs class file, the contents of which are shown in Listing 15-4.

Listing 15-4.  The Contents of the Configuration.cs File

namespace Users.Migrations {
    using System;
    using System.Data.Entity;
    using System.Data.Entity.Migrations;
    using System.Linq;
 



Chapter 15 ■ Advanced ASP.NET Identity

371

    internal sealed class Configuration
            : DbMigrationsConfiguration<Users.Infrastructure.AppIdentityDbContext> {
        public Configuration() {
            AutomaticMigrationsEnabled = true;
            ContextKey = "Users.Infrastructure.AppIdentityDbContext";
        }
 
        protected override void Seed(Users.Infrastructure.AppIdentityDbContext context) {
            //  This method will be called after migrating to the latest version.
 
            //  You can use the DbSet<T>.AddOrUpdate() helper extension method
            //  to avoid creating duplicate seed data. E.g.
            //
            //    context.People.AddOrUpdate(
            //      p => p.FullName,
            //      new Person { FullName = "Andrew Peters" },
            //      new Person { FullName = "Brice Lambson" },
            //      new Person { FullName = "Rowan Miller" }
            //    );
            //
        }
    }
}

Tip■■  Y ou might be wondering why you are entering a database migration command into the console used to manage 
NuGet packages. The answer is that the Package Manager Console is really PowerShell, which is a general-purpose  
tool that is mislabeled by Visual Studio. You can use the console to issue a wide range of helpful commands. See 
http://go.microsoft.com/fwlink/?LinkID=108518 for details.

The class will be used to migrate existing content in the database to the new schema, and the Seed method will 
be called to provide an opportunity to update the existing database records. In Listing 15-5, you can see how I have 
used the Seed method to set a default value for the new City property I added to the AppUser class. (I have also 
updated the class file to reflect my usual coding style.)

Listing 15-5.  Managing Existing Content in the Configuration.cs File

using System.Data.Entity.Migrations;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Users.Infrastructure;
using Users.Models;
 
namespace Users.Migrations {
 
    internal sealed class Configuration
            : DbMigrationsConfiguration<AppIdentityDbContext> {
 

http://go.microsoft.com/fwlink/?LinkID=108518


Chapter 15 ■ Advanced ASP.NET Identity

372

        public Configuration() {
            AutomaticMigrationsEnabled = true;
            ContextKey = "Users.Infrastructure.AppIdentityDbContext";
        }
 
        protected override void Seed(AppIdentityDbContext context) {
 
            AppUserManager userMgr = new AppUserManager(new UserStore<AppUser>(context));
            AppRoleManager roleMgr = new AppRoleManager(new RoleStore<AppRole>(context));
 
            string roleName = "Administrators";
            string userName = "Admin";
            string password = "MySecret";
            string email = "admin@example.com";
 
            if (!roleMgr.RoleExists(roleName)) {
                roleMgr.Create(new AppRole(roleName));
            }
 
            AppUser user = userMgr.FindByName(userName);
            if (user == null) {
                userMgr.Create(new AppUser { UserName = userName, Email = email },
                    password);
                user = userMgr.FindByName(userName);
            }
 
            if (!userMgr.IsInRole(user.Id, roleName)) {
                userMgr.AddToRole(user.Id, roleName);
            }
 
            foreach (AppUser dbUser in userMgr.Users) {
                dbUser.City = Cities.PARIS;
            }
            context.SaveChanges();
        }
    }
}
 

You will notice that much of the code that I added to the Seed method is taken from the IdentityDbInit class, 
which I used to seed the database with an administration user in Chapter 14. This is because the new Configuration 
class added to support database migrations will replace the seeding function of the IdentityDbInit class, which I’ll 
update shortly. Aside from ensuring that there is an admin user, the statements in the Seed method that are important 
are the ones that set the initial value for the City property I added to the AppUser class, as follows:
 
...
foreach (AppUser dbUser in userMgr.Users) {
    dbUser.City = Cities.PARIS;
}
context.SaveChanges();
...
 

http://admin@example.com/


Chapter 15 ■ Advanced ASP.NET Identity

373

You don’t have to set a default value for new properties—I just wanted to demonstrate that the Seed method in 
the Configuration class can be used to update the existing user records in the database.

Caution■■   Be careful when setting values for properties in the Seed method for real projects because the values will be 
applied every time you change the schema, overriding any values that the user has set since the last schema update was 
performed. I set the value of the City property just to demonstrate that it can be done.

Changing the Database Context Class
The reason that I added the seeding code to the Configuration class is that I need to change the IdentityDbInit 
class. At present, the IdentityDbInit class is derived from the descriptively named DropCreateDatabaseIfModelC
hanges<AppIdentityDbContext> class, which, as you might imagine, drops the entire database when the Code First 
classes change. Listing 15-6 shows the changes I made to the IdentityDbInit class to prevent it from affecting  
the database.

Listing 15-6.  Preventing Database Schema Changes in the AppIdentityDbContext.cs File

using System.Data.Entity;
using Microsoft.AspNet.Identity.EntityFramework;
using Users.Models;
using Microsoft.AspNet.Identity;
 
namespace Users.Infrastructure {
    public class AppIdentityDbContext : IdentityDbContext<AppUser> {
 
        public AppIdentityDbContext() : base("IdentityDb") { }
 
        static AppIdentityDbContext() {
            Database.SetInitializer<AppIdentityDbContext>(new IdentityDbInit());
        }
 
        public static AppIdentityDbContext Create() {
            return new AppIdentityDbContext();
        }
    }
 
    public class IdentityDbInit : NullDatabaseInitializer<AppIdentityDbContext> {
    }
}
 

I have removed the methods defined by the class and changed its base to NullDatabaseInitializer<AppIdentit
yDbContext>, which prevents the schema from being altered.



Chapter 15 ■ Advanced ASP.NET Identity

374

Performing the Migration
All that remains is to generate and apply the migration. First, run the following command in the Package 
Manager Console: 

Add-Migration CityProperty

This creates a new migration called CityProperty (I like my migration names to reflect the changes I made).  
A class new file will be added to the Migrations folder, and its name reflects the time at which the command was run 
and the name of the migration. My file is called 201402262244036_CityProperty.cs, for example. The contents of this 
file contain the details of how Entity Framework will change the database during the migration, as shown in Listing 15-7.

Listing 15-7.  The Contents of the 201402262244036_ CityProperty.cs File

namespace Users.Migrations {
    using System;
    using System.Data.Entity.Migrations;
 
    public partial class Init : DbMigration {
        public override void Up() {
            AddColumn("dbo.AspNetUsers", "City", c => c.Int(nullable: false));
        }
 
        public override void Down() {
            DropColumn("dbo.AspNetUsers", "City");
        }
    }
}
 

The Up method describes the changes that have to be made to the schema when the database is upgraded, which 
in this case means adding a City column to the AspNetUsers table, which is the one that is used to store user records 
in the ASP.NET Identity database.

The final step is to perform the migration. Without starting the application, run the following command in the 
Package Manager Console: 

Update-Database –TargetMigration CityProperty

The database schema will be modified, and the code in the Configuration.Seed method will be executed.  
The existing user accounts will have been preserved and enhanced with a City property (which I set to Paris in the 
Seed method).

Testing the Migration
To test the effect of the migration, start the application, navigate to the /Home/UserProps URL, and authenticate as one 
of the Identity users (for example, as Alice with the password MySecret). Once authenticated, you will see the current 
value of the City property for the user and have the opportunity to change it, as shown in Figure 15-3.



Chapter 15 ■ Advanced ASP.NET Identity

375

Defining an Additional Property
Now that database migrations are set up, I am going to define a further property just to demonstrate how subsequent 
changes are handled and to show a more useful (and less dangerous) example of using the Configuration.Seed 
method. Listing 15-8 shows how I added a Country property to the AppUser class.

Listing 15-8.  Adding Another Property in the AppUserModels.cs File

using System;
using Microsoft.AspNet.Identity.EntityFramework;
 
namespace Users.Models {
 
    public enum Cities {
        LONDON, PARIS, CHICAGO
    }
 
    public enum Countries {
        NONE, UK, FRANCE, USA
    }
 
    public class AppUser : IdentityUser {
        public Cities City { get; set; }
        public Countries Country { get; set; }
 
        public void SetCountryFromCity(Cities city) {
            switch (city) {
                case Cities.LONDON:
                    Country = Countries.UK;
                    break;

Figure 15-3.  Displaying and changing a custom user property



Chapter 15 ■ Advanced ASP.NET Identity

376

                case Cities.PARIS:
                    Country = Countries.FRANCE;
                    break;
                case Cities.CHICAGO:
                    Country = Countries.USA;
                    break;
                default:
                    Country = Countries.NONE;
                    break;
            }
        }
    }
}
 

I have added an enumeration to define the country names and a helper method that selects a country value 
based on the City property. Listing 15-9 shows the change I made to the Configuration class so that the Seed method 
sets the Country property based on the City, but only if the value of Country is NONE (which it will be for all users when 
the database is migrated because the Entity Framework sets enumeration columns to the first value).

Listing 15-9.  Modifying the Database Seed in the Configuration.cs File

using System.Data.Entity.Migrations;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Users.Infrastructure;
using Users.Models;
 
namespace Users.Migrations {
 
    internal sealed class Configuration
            : DbMigrationsConfiguration<AppIdentityDbContext> {
 
        public Configuration() {
            AutomaticMigrationsEnabled = true;
            ContextKey = "Users.Infrastructure.AppIdentityDbContext";
        }
 
        protected override void Seed(AppIdentityDbContext context) {
 
            AppUserManager userMgr = new AppUserManager(new UserStore<AppUser>(context));
            AppRoleManager roleMgr = new AppRoleManager(new RoleStore<AppRole>(context));
 
            string roleName = "Administrators";
            string userName = "Admin";
            string password = "MySecret";
            string email = "admin@example.com";
 
            if (!roleMgr.RoleExists(roleName)) {
                roleMgr.Create(new AppRole(roleName));
            }
 

http://admin@example.com/


Chapter 15 ■ Advanced ASP.NET Identity

377

            AppUser user = userMgr.FindByName(userName);
            if (user == null) {
                userMgr.Create(new AppUser { UserName = userName, Email = email },
                    password);
                user = userMgr.FindByName(userName);
            }
 
            if (!userMgr.IsInRole(user.Id, roleName)) {
                userMgr.AddToRole(user.Id, roleName);
            }
 
            foreach (AppUser dbUser in userMgr.Users) {
                if (dbUser.Country == Countries.NONE) {
                    dbUser.SetCountryFromCity(dbUser.City);
                }
            }
 
            context.SaveChanges();
        }
    }
}
 

This kind of seeding is more useful in a real project because it will set a value for the Country property only if one 
has not already been set—subsequent migrations won’t be affected, and user selections won’t be lost.

Adding Application Support
There is no point defining additional user properties if they are not available in the application, so Listing 15-10 shows 
the change I made to the Views/Home/UserProps.cshtml file to display the value of the Country property.

Listing 15-10.  Displaying an Additional Property in the UserProps.cshtml File

@using Users.Models
@model AppUser
@{ ViewBag.Title = "UserProps";}
 
<div class="panel panel-primary">
    <div class="panel-heading">
        Custom User Properties
    </div>
    <table class="table table-striped">
        <tr><th>City</th><td>@Model.City</td></tr>
        <tr><th>Country</th><td>@Model.Country</td></tr>
    </table>
</div>
 
@using (Html.BeginForm()) {
    <div class="form-group">
        <label>City</label>
        @Html.DropDownListFor(x => x.City, new SelectList(Enum.GetNames(typeof(Cities))))
    </div>
    <button class="btn btn-primary" type="submit">Save</button>
} 



Chapter 15 ■ Advanced ASP.NET Identity

378

Listing 15-11 shows the corresponding change I made to the Home controller to update the Country property 
when the City value changes.

Listing 15-11.  Setting Custom Properties in the HomeController.cs File

using System.Web.Mvc;
using System.Collections.Generic;
using System.Web;
using System.Security.Principal;
using System.Threading.Tasks;
using Users.Infrastructure;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
 
using Users.Models;
 
namespace Users.Controllers {
 
    public class HomeController : Controller {
 
        // ...other action methods omitted for brevity...
 
        [Authorize]
        public ActionResult UserProps() {
            return View(CurrentUser);
        }
 
        [Authorize]
        [HttpPost]
        public async Task<ActionResult> UserProps(Cities city) {
            AppUser user = CurrentUser;
            user.City = city;
            user.SetCountryFromCity(city);
            await UserManager.UpdateAsync(user);
            return View(user);
        }
 
        // ...properties omitted for brevity...
    }
} 

Performing the Migration
All that remains is to create and apply a new migration. Enter the following command into the Package Manager 
Console: 

Add-Migration CountryProperty



Chapter 15 ■ Advanced ASP.NET Identity

379

This will generate another file in the Migrations folder that contains the instruction to add the Country column. 
To apply the migration, execute the following command: 

Update-Database –TargetMigration CountryProperty

The migration will be performed, and the value of the Country property will be set based on the value of 
the existing City property for each user. You can check the new user property by starting the application and 
authenticating and navigating to the /Home/UserProps URL, as shown in Figure 15-4.

Figure 15-4.  Creating an additional user property

Tip■■  A lthough I am focused on the process of upgrading the database, you can also migrate back to a previous  
version by specifying an earlier migration. Use the –Force argument make changes that cause data loss, such as  
removing a column.

Working with Claims
In older user-management systems, such as ASP.NET Membership, the application was assumed to be the 
authoritative source of all information about the user, essentially treating the application as a closed world and 
trusting the data that is contained within it.

This is such an ingrained approach to software development that it can be hard to recognize that’s what is 
happening, but you saw an example of the closed-world technique in Chapter 14 when I authenticated users against 
the credentials stored in the database and granted access based on the roles associated with those credentials.  
I did the same thing again in this chapter when I added properties to the user class. Every piece of information that  
I needed to manage user authentication and authorization came from within my application—and that is a perfectly 
satisfactory approach for many web applications, which is why I demonstrated these techniques in such depth.

ASP.NET Identity also supports an alternative approach for dealing with users, which works well when the MVC 
framework application isn’t the sole source of information about users and which can be used to authorize users in 
more flexible and fluid ways than traditional roles allow.



Chapter 15 ■ Advanced ASP.NET Identity

380

This alternative approach uses claims, and in this section I’ll describe how ASP.NET Identity supports claims-
based authorization. Table 15-4 puts claims in context.

Table 15-4.  Putting Claims in Context

Question Answer

What is it? Claims are pieces of information about users that you can use to make 
authorization decisions. Claims can be obtained from external systems 
as well as from the local Identity database.

Why should I care? Claims can be used to flexibly authorize access to action methods. 
Unlike conventional roles, claims allow access to be driven by the 
information that describes the user.

How is it used by the MVC framework? This feature isn’t used directly by the MVC framework, but it is 
integrated into the standard authorization features, such as the 
Authorize attribute.

Tip■■  Y ou don’t have to use claims in your applications, and as Chapter 14 showed, ASP.NET Identity is perfectly happy 
providing an application with the authentication and authorization services without any need to understand claims at all.

Understanding Claims
A claim is a piece of information about the user, along with some information about where the information came from. 
The easiest way to unpack claims is through some practical demonstrations, without which any discussion becomes 
too abstract to be truly useful. To get started, I added a Claims controller to the example project, the definition of which 
you can see in Listing 15-12.

Listing 15-12.  The Contents of the ClaimsController.cs File

using System.Security.Claims;
using System.Web;
using System.Web.Mvc;
 
namespace Users.Controllers {
    public class ClaimsController : Controller {
 
        [Authorize]
        public ActionResult Index() {
            ClaimsIdentity ident = HttpContext.User.Identity as ClaimsIdentity;
            if (ident == null) {
                return View("Error", new string[] { "No claims available" });
            } else {
                return View(ident.Claims);
            }
        }
    }
}



Chapter 15 ■ Advanced ASP.NET Identity

381

Tip■■  Y ou may feel a little lost as I define the code for this example. Don’t worry about the details for the moment—just 
stick with it until you see the output from the action method and view that I define. More than anything else, that will help 
put claims into perspective.

You can get the claims associated with a user in different ways. One approach is to use the Claims property 
defined by the user class, but in this example, I have used the HttpContext.User.Identity property to demonstrate 
the way that ASP.NET Identity is integrated with the rest of the ASP.NET platform. As I explained in Chapter 13, 
the HttpContext.User.Identity property returns an implementation of the IIdentity interface, which is a 
ClaimsIdentity object when working using ASP.NET Identity. The ClaimsIdentity class is defined in the  
System.Security.Claims namespace, and Table 15-5 shows the members it defines that are relevant to this chapter.

Table 15-5.  The Members Defined by the ClaimsIdentity Class

Name Description

Claims Returns an enumeration of Claim objects representing the claims for the user.

AddClaim(claim) Adds a claim to the user identity.

AddClaims(claims) Adds an enumeration of Claim objects to the user identity.

HasClaim(predicate) Returns true if the user identity contains a claim that matches the specified 
predicate. See the “Applying Claims” section for an example predicate.

RemoveClaim(claim) Removes a claim from the user identity.

Table 15-6.  The Properties Defined by the Claim Class

Name Description

Issuer Returns the name of the system that provided the claim

Subject Returns the ClaimsIdentity object for the user who the claim refers to

Type Returns the type of information that the claim represents

Value Returns the piece of information that the claim represents

Other members are available, but the ones in the table are those that are used most often in web applications,  
for reason that will become obvious as I demonstrate how claims fit into the wider ASP.NET platform.

In Listing 15-12, I cast the IIdentity implementation to the ClaimsIdentity type and pass the enumeration  
of Claim objects returned by the ClaimsIdentity.Claims property to the View method. A Claim object represents  
a single piece of data about the user, and the Claim class defines the properties shown in Table 15-6.

Listing 15-13 shows the contents of the Index.cshtml file that I created in the Views/Claims folder and that 
is rendered by the Index action of the Claims controller. The view adds a row to a table for each claim about  
the user.



Chapter 15 ■ Advanced ASP.NET Identity

382

Listing 15-13.  The Contents of the Index.cshtml File in the Views/Claims Folder

@using System.Security.Claims
@using Users.Infrastructure
@model IEnumerable<Claim>
@{ ViewBag.Title = "Claims"; }
 
<div class="panel panel-primary">
    <div class="panel-heading">
        Claims
    </div>
    <table class="table table-striped">
        <tr>
            <th>Subject</th><th>Issuer</th>
            <th>Type</th><th>Value</th>
        </tr>
        @foreach (Claim claim in Model.OrderBy(x => x.Type)) {
            <tr>
                <td>@claim.Subject.Name</td>
                <td>@claim.Issuer</td>
                <td>@Html.ClaimType(claim.Type)</td>
                <td>@claim.Value</td>
            </tr>
        }
    </table>
</div>
 

The value of the Claim.Type property is a URI for a Microsoft schema, which isn’t especially useful. The popular 
schemas are used as the values for fields in the System.Security.Claims.ClaimTypes class, so to make the output 
from the Index.cshtml view easier to read, I added an HTML helper to the IdentityHelpers.cs file, as shown in 
Listing 15-14. It is this helper that I use in the Index.cshtml file to format the value of the Claim.Type property.

Listing 15-14.  Adding a Helper to the IdentityHelpers.cs File

using System.Web;
using System.Web.Mvc;
using Microsoft.AspNet.Identity.Owin;
using System;
using System.Linq;
using System.Reflection;
using System.Security.Claims;
 
namespace Users.Infrastructure {
    public static class IdentityHelpers {
 
        public static MvcHtmlString GetUserName(this HtmlHelper html, string id) {
            AppUserManager mgr
                = HttpContext.Current.GetOwinContext().GetUserManager<AppUserManager>();
            return new MvcHtmlString(mgr.FindByIdAsync(id).Result.UserName);
        }
 



Chapter 15 ■ Advanced ASP.NET Identity

383

        public static MvcHtmlString ClaimType(this HtmlHelper html, string claimType) {
            FieldInfo[] fields = typeof(ClaimTypes).GetFields();
            foreach (FieldInfo field in fields) {
                if (field.GetValue(null).ToString() == claimType) {
                    return new MvcHtmlString(field.Name);
                }
            }
            return new MvcHtmlString(string.Format("{0}",
                claimType.Split('/', '.').Last()));
        }
    }
}

Note■■  T he helper method isn’t at all efficient because it reflects on the fields of the ClaimType class for each claim 
that is displayed, but it is sufficient for my purposes in this chapter. You won’t often need to display the claim type in  
real applications.

To see why I have created a controller that uses claims without really explaining what they are, start the application, 
authenticate as the user Alice (with the password MySecret), and request the /Claims/Index URL. Figure 15-5 shows the 
content that is generated.

Figure 15-5.  The output from the Index action of the Claims controller

It can be hard to make out the detail in the figure, so I have reproduced the content in Table 15-7.



Chapter 15 ■ Advanced ASP.NET Identity

384

The table shows the most important aspect of claims, which is that I have already been using them when I 
implemented the traditional authentication and authorization features in Chapter 14. You can see that some of the 
claims relate to user identity (the Name claim is Alice, and the NameIdentifier claim is Alice’s unique user ID in my 
ASP.NET Identity database).

Other claims show membership of roles—there are two Role claims in the table, reflecting the fact that Alice is 
assigned to both the Users and Employees roles. There is also a claim about how Alice has been authenticated: The 
IdentityProvider is set to ASP.NET Identity.

The difference when this information is expressed as a set of claims is that you can determine where the data 
came from. The Issuer property for all the claims shown in the table is set to LOCAL AUTHORITY, which indicates that 
the user’s identity has been established by the application.

So, now that you have seen some example claims, I can more easily describe what a claim is. A claim is any piece 
of information about a user that is available to the application, including the user’s identity and role memberships. 
And, as you have seen, the information I have been defining about my users in earlier chapters is automatically made 
available as claims by ASP.NET Identity.

Creating and Using Claims
Claims are interesting for two reasons. The first reason is that an application can obtain claims from multiple sources, 
rather than just relying on a local database for information about the user. You will see a real example of this when I show 
you how to authenticate users through a third-party system in the “Using Third-Party Authentication” section, but for 
the moment I am going to add a class to the example project that simulates a system that provides claims information. 
Listing 15-15 shows the contents of the LocationClaimsProvider.cs file that I added to the Infrastructure folder.

Listing 15-15.  The Contents of the LocationClaimsProvider.cs File

using System.Collections.Generic;
using System.Security.Claims;
 
namespace Users.Infrastructure {
 
    public static class LocationClaimsProvider {
 
        public static IEnumerable<Claim> GetClaims(ClaimsIdentity user) {
            List<Claim> claims = new List<Claim>();
            if (user.Name.ToLower() == "alice") {
                    claims.Add(CreateClaim(ClaimTypes.PostalCode, "DC 20500"));
                    claims.Add(CreateClaim(ClaimTypes.StateOrProvince, "DC"));

Table 15-7.  The Data Shown in Figure 15-5

Subject Issuer Type Value

Alice LOCAL AUTHORITY SecurityStamp Unique ID

Alice LOCAL AUTHORITY IdentityProvider ASP.NET Identity

Alice LOCAL AUTHORITY Role Employees

Alice LOCAL AUTHORITY Role Users

Alice LOCAL AUTHORITY Name Alice

Alice LOCAL AUTHORITY NameIdentifier Alice’s user ID



Chapter 15 ■ Advanced ASP.NET Identity

385

            } else {
                    claims.Add(CreateClaim(ClaimTypes.PostalCode, "NY 10036"));
                    claims.Add(CreateClaim(ClaimTypes.StateOrProvince, "NY"));
            }
            return claims;
        }
 
        private static Claim CreateClaim(string type, string value) {
            return new Claim(type, value, ClaimValueTypes.String, "RemoteClaims");
        }
    }
}
 

The GetClaims method takes a ClaimsIdentity argument and uses the Name property to create claims about the 
user’s ZIP code and state. This class allows me to simulate a system such as a central HR database, which would be  
the authoritative source of location information about staff, for example.

Claims are associated with the user’s identity during the authentication process, and Listing 15-16 shows the 
changes I made to the Login action method of the Account controller to call the LocationClaimsProvider class.

Listing 15-16.  Associating Claims with a User in the AccountController.cs File

...
[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Login(LoginModel details, string returnUrl) {
    if (ModelState.IsValid) {
        AppUser user = await UserManager.FindAsync(details.Name,
            details.Password);
        if (user == null) {
            ModelState.AddModelError("", "Invalid name or password.");
        } else {
            ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,
                DefaultAuthenticationTypes.ApplicationCookie);
            ident.AddClaims(LocationClaimsProvider.GetClaims(ident));
            AuthManager.SignOut();
            AuthManager.SignIn(new AuthenticationProperties {
                IsPersistent = false
            }, ident);
            return Redirect(returnUrl);
        }
    }
    ViewBag.returnUrl = returnUrl;
    return View(details);
}
...
 

You can see the effect of the location claims by starting the application, authenticating as a user, and requesting 
the /Claim/Index URL. Figure 15-6 shows the claims for Alice. You may have to sign out and sign back in again to  
see the change.



Chapter 15 ■ Advanced ASP.NET Identity

386

Obtaining claims from multiple locations means that the application doesn’t have to duplicate data that is held 
elsewhere and allows integration of data from external parties. The Claim.Issuer property tells you where a claim 
originated from, which helps you judge how accurate the data is likely to be and how much weight you should give 
the data in your application. Location data obtained from a central HR database is likely to be more accurate and 
trustworthy than data obtained from an external mailing list provider, for example.

Applying Claims
The second reason that claims are interesting is that you can use them to manage user access to your application 
more flexibly than with standard roles. The problem with roles is that they are static, and once a user has been 
assigned to a role, the user remains a member until explicitly removed. This is, for example, how long-term employees 
of big corporations end up with incredible access to internal systems: They are assigned the roles they require for each 
new job they get, but the old roles are rarely removed. (The unexpectedly broad systems access sometimes becomes 
apparent during the investigation into how someone was able to ship the contents of the warehouse to their home 
address—true story.)

Claims can be used to authorize users based directly on the information that is known about them, which 
ensures that the authorization changes when the data changes. The simplest way to do this is to generate Role claims 
based on user data that are then used by controllers to restrict access to action methods. Listing 15-17 shows the 
contents of the ClaimsRoles.cs file that I added to the Infrastructure.

Figure 15-6.  Defining additional claims for users



Chapter 15 ■ Advanced ASP.NET Identity

387

Listing 15-17.  The Contents of the ClaimsRoles.cs File

using System.Collections.Generic;
using System.Security.Claims;
 
namespace Users.Infrastructure {
    public class ClaimsRoles {
 
        public static IEnumerable<Claim> CreateRolesFromClaims(ClaimsIdentity user) {
            List<Claim> claims = new List<Claim>();
            if (user.HasClaim(x => x.Type == ClaimTypes.StateOrProvince
                        && x.Issuer == "RemoteClaims" && x.Value == "DC")
                    && user.HasClaim(x => x.Type == ClaimTypes.Role
                        && x.Value == "Employees")) {
                claims.Add(new Claim(ClaimTypes.Role, "DCStaff"));
            }
            return claims;
        }
    }
}
 

The gnarly looking CreateRolesFromClaims method uses lambda expressions to determine whether the user has 
a StateOrProvince claim from the RemoteClaims issuer with a value of DC and a Role claim with a value of Employees. 
If the user has both claims, then a Role claim is returned for the DCStaff role. Listing 15-18 shows how I call the 
CreateRolesFromClaims method from the Login action in the Account controller.

Listing 15-18.  Generating Roles Based on Claims in the AccountController.cs File

...
[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Login(LoginModel details, string returnUrl) {
    if (ModelState.IsValid) {
        AppUser user = await UserManager.FindAsync(details.Name,
            details.Password);
        if (user == null) {
            ModelState.AddModelError("", "Invalid name or password.");
        } else {
            ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,
                DefaultAuthenticationTypes.ApplicationCookie);
            ident.AddClaims(LocationClaimsProvider.GetClaims(ident));
            ident.AddClaims(ClaimsRoles.CreateRolesFromClaims(ident));
            AuthManager.SignOut();
            AuthManager.SignIn(new AuthenticationProperties {
                IsPersistent = false
            }, ident);
            return Redirect(returnUrl);
        }
    }
    ViewBag.returnUrl = returnUrl;
    return View(details);
}
... 



Chapter 15 ■ Advanced ASP.NET Identity

388

I can then restrict access to an action method based on membership of the DCStaff role. Listing 15-19 shows a 
new action method I added to the Claims controller to which I have applied the Authorize attribute.

Listing 15-19.  Adding a New Action Method to the ClaimsController.cs File

using System.Security.Claims;
using System.Web;
using System.Web.Mvc;
 
namespace Users.Controllers {
    public class ClaimsController : Controller {
 
        [Authorize]
        public ActionResult Index() {
            ClaimsIdentity ident = HttpContext.User.Identity as ClaimsIdentity;
            if (ident == null) {
                return View("Error", new string[] { "No claims available" });
            } else {
                return View(ident.Claims);
            }
        }
 
        [Authorize(Roles="DCStaff")]
        public string OtherAction() {
            return "This is the protected action";
        }
    }
}
 

Users will be able to access OtherAction only if their claims grant them membership to the DCStaff role. 
Membership of this role is generated dynamically, so a change to the user’s employment status or location information 
will change their authorization level.

Authorizing Access Using Claims
The previous example is an effective demonstration of how claims can be used to keep authorizations fresh and 
accurate, but it is a little indirect because I generate roles based on claims data and then enforce my authorization 
policy based on the membership of that role. A more direct and flexible approach is to enforce authorization directly 
by creating a custom authorization filter attribute. Listing 15-20 shows the contents of the ClaimsAccessAttribute.cs 
file, which I added to the Infrastructure folder and used to create such a filter.

Listing 15-20.  The Contents of the ClaimsAccessAttribute.cs File

using System.Security.Claims;
using System.Web;
using System.Web.Mvc;
 
namespace Users.Infrastructure {
    public class ClaimsAccessAttribute : AuthorizeAttribute {
 



Chapter 15 ■ Advanced ASP.NET Identity

389

        public string Issuer { get; set; }
        public string ClaimType { get; set; }
        public string Value { get; set; }
 
        protected override bool AuthorizeCore(HttpContextBase context) {
            return context.User.Identity.IsAuthenticated
                && context.User.Identity is ClaimsIdentity
                && ((ClaimsIdentity)context.User.Identity).HasClaim(x =>
                    x.Issuer == Issuer && x.Type == ClaimType && x.Value == Value
                );
        }
    }
}
 

The attribute I have defined is derived from the AuthorizeAttribute class, which makes it easy to create custom 
authorization policies in MVC framework applications by overriding the AuthorizeCore method. My implementation 
grants access if the user is authenticated, the IIdentity implementation is an instance of ClaimsIdentity, and the 
user has a claim with the issuer, type, and value matching the class properties. Listing 15-21 shows how I applied the 
attribute to the Claims controller to authorize access to the OtherAction method based on one of the location claims 
created by the LocationClaimsProvider class.

Listing 15-21.  Performing Authorization on Claims in the ClaimsController.cs File

using System.Security.Claims;
using System.Web;
using System.Web.Mvc;
using Users.Infrastructure;
 
namespace Users.Controllers {
    public class ClaimsController : Controller {
 
        [Authorize]
        public ActionResult Index() {
            ClaimsIdentity ident = HttpContext.User.Identity as ClaimsIdentity;
            if (ident == null) {
                return View("Error", new string[] { "No claims available" });
            } else {
                return View(ident.Claims);
            }
        }
 
        [ClaimsAccess(Issuer="RemoteClaims", ClaimType=ClaimTypes.PostalCode,
             Value="DC 20500")]
        public string OtherAction() {
            return "This is the protected action";
        }
    }
}
 

My authorization filter ensures that only users whose location claims specify a ZIP code of DC 20500 can invoke 
the OtherAction method.



Chapter 15 ■ Advanced ASP.NET Identity

390

Using Third-Party Authentication
One of the benefits of a claims-based system such as ASP.NET Identity is that any of the claims can come from an 
external system, even those that identify the user to the application. This means that other systems can authenticate 
users on behalf of the application, and ASP.NET Identity builds on this idea to make it simple and easy to add support 
for authenticating users through third parties such as Microsoft, Google, Facebook, and Twitter.

There are some substantial benefits of using third-party authentication: Many users will already have an account, 
users can elect to use two-factor authentication, and you don’t have to manage user credentials in the application. 
In the sections that follow, I’ll show you how to set up and use third-party authentication for Google users, which 
Table 15-8 puts into context.

Table 15-8.  Putting Third-Party Authentication in Context

Question Answer

What is it? Authenticating with third parties lets you take advantage of the popularity 
of companies such as Google and Facebook.

Why should I care? Users don’t like having to remember passwords for many different sites. 
Using a provider with large-scale adoption can make your application 
more appealing to users of the provider’s services.

How is it used by the MVC framework? This feature isn’t used directly by the MVC framework.

Note■■  T he reason I have chosen to demonstrate Google authentication is that it is the only option that doesn’t 
require me to register my application with the authentication service. You can get details of the registration processes 
required at http://bit.ly/1cqLTrE.

Enabling Google Authentication
ASP.NET Identity comes with built-in support for authenticating users through their Microsoft, Google, Facebook, 
and Twitter accounts as well more general support for any authentication service that supports OAuth. The first step 
is to add the NuGet package that includes the Google-specific additions for ASP.NET Identity. Enter the following 
command into the Package Manager Console: 

Install-Package Microsoft.Owin.Security.Google -version 2.0.2

There are NuGet packages for each of the services that ASP.NET Identity supports, as described in Table 15-9.

http://bit.ly/1cqLTrE


Chapter 15 ■ Advanced ASP.NET Identity

391

Once the package is installed, I enable support for the authentication service in the OWIN startup class, which 
is defined in the App_Start/IdentityConfig.cs file in the example project. Listing 15-22 shows the change that I 
have made.

Listing 15-22.  Enabling Google Authentication in the IdentityConfig.cs File

using Microsoft.AspNet.Identity;
using Microsoft.Owin;
using Microsoft.Owin.Security.Cookies;
using Owin;
using Users.Infrastructure;
using Microsoft.Owin.Security.Google;
 
namespace Users {
    public class IdentityConfig {
        public void Configuration(IAppBuilder app) {
 
            app.CreatePerOwinContext<AppIdentityDbContext>(AppIdentityDbContext.Create);
            app.CreatePerOwinContext<AppUserManager>(AppUserManager.Create);
            app.CreatePerOwinContext<AppRoleManager>(AppRoleManager.Create);
 
            app.UseCookieAuthentication(new CookieAuthenticationOptions {
                AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
                LoginPath = new PathString("/Account/Login"),
            });
 
            app.UseExternalSignInCookie(DefaultAuthenticationTypes.ExternalCookie);
            app.UseGoogleAuthentication();
        }
    }
}
 

Each of the packages that I listed in Table 15-9 contains an extension method that enables the corresponding 
service. The extension method for the Google service is called UseGoogleAuthentication, and it is called on the 
IAppBuilder implementation that is passed to the Configuration method.

Next I added a button to the Views/Account/Login.cshtml file, which allows users to log in via Google. You can 
see the change in Listing 15-23.

Table 15-9.  The NuGet Authenticaton Packages

Name Description

Microsoft.Owin.Security.Google Authenticates users with Google accounts

Microsoft.Owin.Security.Facebook Authenticates users with Facebook accounts

Microsoft.Owin.Security.Twitter Authenticates users with Twitter accounts

Microsoft.Owin.Security.MicrosoftAccount Authenticates users with Microsoft accounts

Microsoft.Owin.Security.OAuth Authenticates users against any OAuth 2.0 service



Chapter 15 ■ Advanced ASP.NET Identity

392

Listing 15-23.  Adding a Google Login Button to the Login.cshtml File

@model Users.Models.LoginModel
@{ ViewBag.Title = "Login";}
<h2>Log In</h2>
 
@Html.ValidationSummary()
 
@using (Html.BeginForm()) {
    @Html.AntiForgeryToken();
    <input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" />
    <div class="form-group">
        <label>Name</label>
        @Html.TextBoxFor(x => x.Name, new { @class = "form-control" })
    </div>
    <div class="form-group">
        <label>Password</label>
        @Html.PasswordFor(x => x.Password, new { @class = "form-control" })
    </div>
    <button class="btn btn-primary" type="submit">Log In</button>
}
 
@using (Html.BeginForm("GoogleLogin", "Account")) {
    <input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" />
    <button class="btn btn-primary" type="submit">Log In via Google</button>
}
 

The new button submits a form that targets the GoogleLogin action on the Account controller. You can see this 
method—and the other changes I made the controller—in Listing 15-24.

Listing 15-24.  Adding Support for Google Authentication to the AccountController.cs File

using System.Threading.Tasks;
using System.Web.Mvc;
using Users.Models;
using Microsoft.Owin.Security;
using System.Security.Claims;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Users.Infrastructure;
using System.Web;
 
namespace Users.Controllers {
 
    [Authorize]
    public class AccountController : Controller {
 
        [AllowAnonymous]
        public ActionResult Login(string returnUrl) {
            if (HttpContext.User.Identity.IsAuthenticated) {
                return View("Error", new string[] { "Access Denied" });
            }
 



Chapter 15 ■ Advanced ASP.NET Identity

393

            ViewBag.returnUrl = returnUrl;
            return View();
        }
 
        [HttpPost]
        [AllowAnonymous]
        [ValidateAntiForgeryToken]
        public async Task<ActionResult> Login(LoginModel details, string returnUrl) {
            if (ModelState.IsValid) {
                AppUser user = await UserManager.FindAsync(details.Name,
                    details.Password);
                if (user == null) {
                    ModelState.AddModelError("", "Invalid name or password.");
                } else {
                    ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,
                        DefaultAuthenticationTypes.ApplicationCookie);
 
                    ident.AddClaims(LocationClaimsProvider.GetClaims(ident));
                    ident.AddClaims(ClaimsRoles.CreateRolesFromClaims(ident));
 
                    AuthManager.SignOut();
                    AuthManager.SignIn(new AuthenticationProperties {
                        IsPersistent = false
                    }, ident);
                    return Redirect(returnUrl);
                }
            }
            ViewBag.returnUrl = returnUrl;
            return View(details);
        }
 
        [HttpPost]
        [AllowAnonymous]
        public ActionResult GoogleLogin(string returnUrl) {
            var properties = new AuthenticationProperties {
                RedirectUri = Url.Action("GoogleLoginCallback",
                    new { returnUrl = returnUrl})
            };
            HttpContext.GetOwinContext().Authentication.Challenge(properties, "Google");
            return new HttpUnauthorizedResult();
        }
 
        [AllowAnonymous]
        public async Task<ActionResult> GoogleLoginCallback(string returnUrl) {
            ExternalLoginInfo loginInfo = await AuthManager.GetExternalLoginInfoAsync();
            AppUser user = await UserManager.FindAsync(loginInfo.Login);
            if (user == null) {
                user = new AppUser {
                    Email = loginInfo.Email,
                    UserName = loginInfo.DefaultUserName,
                    City = Cities.LONDON, Country = Countries.UK
                };



Chapter 15 ■ Advanced ASP.NET Identity

394

                IdentityResult result = await UserManager.CreateAsync(user);
                if (!result.Succeeded) {
                    return View("Error", result.Errors);
                } else {
                    result = await UserManager.AddLoginAsync(user.Id, loginInfo.Login);
                    if (!result.Succeeded) {
                        return View("Error", result.Errors);
                    }
                }
            }
 
            ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,
                DefaultAuthenticationTypes.ApplicationCookie);
            ident.AddClaims(loginInfo.ExternalIdentity.Claims);
            AuthManager.SignIn(new AuthenticationProperties {
                IsPersistent = false }, ident);
            return Redirect(returnUrl ?? "/");
        }
 
        [Authorize]
        public ActionResult Logout() {
            AuthManager.SignOut();
            return RedirectToAction("Index", "Home");
        }
 
        private IAuthenticationManager AuthManager {
            get {
                return HttpContext.GetOwinContext().Authentication;
            }
        }
 
        private AppUserManager UserManager {
            get {
                return HttpContext.GetOwinContext().GetUserManager<AppUserManager>();
            }
        }
    }
}
 

The GoogleLogin method creates an instance of the AuthenticationProperties class and sets the RedirectUri 
property to a URL that targets the GoogleLoginCallback action in the same controller. The next part is a magic phrase 
that causes ASP.NET Identity to respond to an unauthorized error by redirecting the user to the Google authentication 
page, rather than the one defined by the application:
 
...
HttpContext.GetOwinContext().Authentication.Challenge(properties, "Google");
return new HttpUnauthorizedResult();
...
 



Chapter 15 ■ Advanced ASP.NET Identity

395

This means that when the user clicks the Log In via Google button, their browser is redirected to the Google 
authentication service and then redirected back to the GoogleLoginCallback action method once they are 
authenticated.

I get details of the external login by calling the GetExternalLoginInfoAsync of the IAuthenticationManager 
implementation, like this:
 
...
ExternalLoginInfo loginInfo = await AuthManager.GetExternalLoginInfoAsync();
...
 

The ExternalLoginInfo class defines the properties shown in Table 15-10.

Table 15-10.  The Properties Defined by the ExternalLoginInfo Class

Name Description

DefaultUserName Returns the username

Email Returns the e-mail address

ExternalIdentity Returns a ClaimsIdentity that identities the user

Login Returns a UserLoginInfo that describes the external login

I use the FindAsync method defined by the user manager class to locate the user based on the value of the 
ExternalLoginInfo.Login property, which returns an AppUser object if the user has been authenticated with the 
application before:
 
...
AppUser user = await UserManager.FindAsync(loginInfo.Login);
...
 

If the FindAsync method doesn’t return an AppUser object, then I know that this is the first time that this user has 
logged into the application, so I create a new AppUser object, populate it with values, and save it to the database. I also 
save details of how the user logged in so that I can find them next time:
 
...
result = await UserManager.AddLoginAsync(user.Id, loginInfo.Login);
...
 

All that remains is to generate an identity the user, copy the claims provided by Google, and create an 
authentication cookie so that the application knows the user has been authenticated:
 
...
ClaimsIdentity ident = await UserManager.CreateIdentityAsync(user,
    DefaultAuthenticationTypes.ApplicationCookie);
ident.AddClaims(loginInfo.ExternalIdentity.Claims);
AuthManager.SignIn(new AuthenticationProperties { IsPersistent = false }, ident);
...
 



Chapter 15 ■ Advanced ASP.NET Identity

396

Testing Google Authentication
There is one further change that I need to make before I can test Google authentication: I need to change the account 
verification I set up in Chapter 13 because it prevents accounts from being created with e-mail addresses that are not 
within the example.com domain. Listing 15-25 shows how I removed the verification from the AppUserManager class.

Listing 15-25.  Disabling Account Validation in the AppUserManager.cs File

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Users.Models;
 
namespace Users.Infrastructure {
    public class AppUserManager : UserManager<AppUser> {
 
        public AppUserManager(IUserStore<AppUser> store)
            : base(store) {
        }
 
        public static AppUserManager Create(
                IdentityFactoryOptions<AppUserManager> options,
                IOwinContext context) {
 
            AppIdentityDbContext db = context.Get<AppIdentityDbContext>();
            AppUserManager manager = new AppUserManager(new UserStore<AppUser>(db));
 
            manager.PasswordValidator = new CustomPasswordValidator {
                RequiredLength = 6,
                RequireNonLetterOrDigit = false,
                RequireDigit = false,
                RequireLowercase = true,
                RequireUppercase = true
            };
 
            //manager.UserValidator = new CustomUserValidator(manager) {
            //    AllowOnlyAlphanumericUserNames = true,
            //    RequireUniqueEmail = true
            //};
 
            return manager;
        }
    }
}

Tip■■  Y ou can use validation for externally authenticated accounts, but I am just going to disable the feature for simplicity.

 

http://example.com/


Chapter 15 ■ Advanced ASP.NET Identity

397

To test authentication, start the application, click the Log In via Google button, and provide the credentials for a 
valid Google account. When you have completed the authentication process, your browser will be redirected back to 
the application. If you navigate to the /Claims/Index URL, you will be able to see how claims from the Google system 
have been added to the user’s identity, as shown in Figure 15-7.

Figure 15-7.  Claims from Google

Summary
In this chapter, I showed you some of the advanced features that ASP.NET Identity supports. I demonstrated the use 
of custom user properties and how to use database migrations to preserve data when you upgrade the schema to 
support them. I explained how claims work and how they can be used to create more flexible ways of authorizing 
users. I finished the chapter by showing you how to authenticate users via Google, which builds on the ideas behind 
the use of claims.

And that is all I have to teach you about the ASP.NET platform and how it supports MVC framework applications. 
I started by exploring the request handling life cycle and how it can be extended, managed, and disrupted. I then took 
you on a tour of the services that ASP.NET provides, showing you how they can be used to enhance and optimize your 
applications and improve the experience you deliver to your users. When writing MVC framework applications, it is 
easy to take the ASP.NET platform for granted, but this book has shown you just how much low-level functionality is 
available and how valuable it can be. I wish you every success in your web application projects, and I can only hope 
you have enjoyed reading this book as much as I enjoyed writing it.



A�       �
AddAttribute method, 72
AdminController.cs file, 310
App_Browsers/Nexus.browser file, 139
AppIdentityDbContext class, 306
AppIdentityDbContext.cs file, 305
Application_End method, 28, 30–31
Application life cycle

Application_End method, 28
Application_Start method, 27
Debugger Break method, 29
global application class, 26
Global.asax.cs file, 26–27
Global.asax file, 26–27
life cycle diagram, 28
MvcApplication class, 27
start notification testing, 29–30
stop notification testing, 30–31
Visual Studio debugger, 29

Application_Start method, 30, 63
Application state data

advantage, 221
AppStateHelper.cs, 221
creation, 219
Enum class, 222
Get method, 222
HomeController, 222
HttpApplicationState class, 220
Index action method, 223
sweet spot, 220
synchronization effect

AppStateHelper.cs file, 225
GetMultiple and SetMultiple methods, 226
HomeController.cs file, 226–227
HttpApplicationState class, 223
impact of, 224
Lock and UnLock methods, 225
modifications, 224

multiple requests, 223
output, 227
queuing effect, 224
side effect, 225
view state, 227

AppUser.cs file, 305
AppUserManager.cs file, 307
ASP.NET configuration elements, 214
ASP.NET configuration system, 181
ASP.NET identity

AppUserManager.cs file, 323
authenticating users (see User authentication)
authorizing users with roles  

(see User authorization)
built-in validator class, 321
centralized user administration tools, 310
claims

access authorization, 388
additional claims, 386
applying, 386
Claim class property, 381
ClaimsController.cs file content, 380
ClaimsIdentity class members, 381
context, 380
GetClaims method, 385
helper method, 382
Index action, 383
Index.cshtml file content, 382
LocationClaimsProvider.cs  

file content, 384
user’s identity, 385

create functionality, 316
creating database, 301
custom password validator, 319
custom user properties

base class, 367
context, 367
database migration (see Database migration)
defining, 368

Index

399



custom user validation policy, 324
CustomUserValidator.cs file, 322
database seeding

AdminController.cs file, 362
AppIdentityDbContext.cs file, 361
RoleAdminController.cs file, 362

DeleteAsync method, 326
Edit action method

AdminController.cs file, 327
editing user account, 331
IPasswordHasher interface, 330

entity framework classes
database context class, 305
start class, 308
user class, 304
user manager class, 306

HomeController.cs file, 298
Index.cshtml file, 299
initial users in, 366
_Layout.cshtml file, 299
NuGet packages, 302
OWIN, 300
role configuration, 367
testing application, 299–300
third-party authentication

benefits, 390
context, 390
for Google users  

(see Google authentication)
user creation

AdminController.cs file, 313
Create.cshtml file, 315
IdentityResult interface, 314
UserViewModels.cs file, 313

UserValidator class, 321
validating passwords, 317
Web.config file, 302
Web Forms Code Nuggets, 366

ASP.NET life cycle
application life cycle

Application_End method, 28
Application_Start method, 27
Debugger Break method, 29
global application class, 26
Global.asax.cs file, 26–27
Global.asax file, 26–27
life cycle diagram, 28
MvcApplication class, 27
start notification testing, 29–30
stop notification testing, 30–31
Visual Studio debugger, 29

context objects (see Context objects)
request life cycle (see Request life cycle)

ASP.NET platform
ASP.NET foundation, 4
ASP.NET services, 5
code styles, 6
Google Chrome, 8
relationship with MVC framework, 5
Visual Studio, 7

Asynchronous handlers, 90
Authenticate action method, 110

B�       �
Built-in modules

functionality, 75
HomeController.cs file, 72
LINQ method, 73
Modules.cshtml file, 73
Tuple objects, 74
View method, 73

C�       �
Caching data

cache configuration
properties, 257
size control, 259
Web.config file, 257

CacheController.cs file, 254
CacheDependency class, 265
cache method

absolute time expiration, 260
AggregateCacheDependency class, 268
cache dependency, 263
custom dependency, 266
scavenging process, 262
sliding time expirations, 261

data cache feature, 252–253
Glimpse Cache tab, 256
Html.BeginForm helper method, 255
Index.cshtml file, 255
Populate Cache button, 255
PopulateCache method, 254
receiving dependency notifications

Cache.Insert method, 269–270
CacheItemRemovedReason enumeration, 270
CacheItemUpdateReason enumeration, 272
handler method, 271–272

resource-intensive/time-consuming, 252
System.Net.Http assembly, 252

Configuration data
application settings

control elements, 186
DisplaySingle.cshtml file, 189
HomeController.cs file, 187–188

■ index

400

ASP.NET identity (cont.)



NameValueCollection properties, 187
single configuration value, 189
Web.config file, 185

ASP.NET configuration elements
handler classes, 215
HomeController.cs file, 215

ASP.NET configuration system, 181
basic ASP.NET configuration data, 184
connection strings

element attributes, 191
HomeController.cs file, 191
LocalSqlServer connection string, 192
Web.config file, 190

groups (see Configuration groups)
hierarchy, 182
HomeController.cs file, 180
Index.cshtml file, 180
overriding settings  

(see Overriding configuration)
WebConfigurationManager class, 185

Configuration groups
application-level Web.config file, 192
collection configuration section

collection handler class, 202
definition, 203
handler class, 202–203
item handler class, 201
reading, 204
Web.config file, 200

section group creation
handler class creation, 206
reading, 206
Web.config file, 205–206

simple configuration section (see Simple 
configuration section)

Configuration hierarchy, 182
Configuration property attribute, 195
Configuration validation attributes, 196
Connection string, 190
ContentCache project

action method, 273
AppStateHelper.cs file, 274
ASP.NET platform, 273
ASP.NET server, 281
attribute

cache location control, 278, 281
context, 277
OutputCache, 278

Bootstrap, 274
caching variation

cache profiles, 287–288
child actions, 288–289
context, 283
custom, 285
flexibility, 283

form/query string data, 284
headers, 283–284

code-based caching policy
context, 290
HttpCacheability enumeration, 292
HttpCachePolicy class, 291
properties, 290
validation callback method, 293–294

counter increment, 276
HomeController.cs file, 274
IncrementAndGet method, 274
Index action method, 275
Index.cshtml file, 275
Infrastructure folder, 274

Content delivery network (CDN), 239
Context objects

ASP.NET/MVC components, 43
definition, 42
HttpApplication objects

CreateTimeStamp, 46
Global.asax.cs file, 46
HttpContext class, 43, 47
HttpException, 45
members definition, 45
timestamps, 47

HttpContext members, 42–43
HttpContext object, 43
HttpRequest objects

additional properties, 52
ASP.NET/MVC components, 51
Index.cshtml file, 50
properties definition, 49
request property values, 51

HttpResponse objects
ASP.NET/MVC components, 54
members, 53

CreateAsync method, 314
CreateIdentityAsync method, 341
CreateNewElement method, 202
Custom handler factory

CounterHandler.cs file, 98
definition, 97
handlers selection, 101
IHttpHandlerFactory interface, 97
registration, 99
reusing handler, 102

D, E�       �
Database migration

additional property
application support, 377
AppUserModels.cs file, 375
Configuration.cs file, 376

performance, 374, 378

■ Index

401



preparation
AppUser class, 372
Configuration.cs file content, 370
database context class change, 373
existing content, 371
Studio Package Manager Console, 370

testing, 374–375
Device capability

adapting capabilities
display modes, 156
Index.cshtml view, 148
IsMobileDevice property, 149
landscape screen orientation, 149
partial views, 154
Razor conditional statement, 152, 154
responsive design, 150–151

application, 132
Chrome rendering engine, 134
HomeController.cs file, 131
HttpBrowserCapabilities class

Browser.cshtml file, 136
HomeController.cs file, 135
property names and values, 137
ScreenPixelsHeight and  

ScreenPixelsWidth properties, 135
improving capability data

Application_Start method, 142
browser files, 138
custom browser file, 139, 141
Global.asax.cs file, 142
HttpBrowserCapabilities values, 138
IsMobileDevice property, 139
KindleCapabilities.cs file, 141
third-party capabilities data  

(see Third-party capabilities data)
Index.cshtml file, 131
iPhone 5, 133
mobile client, 129
process, 134
Programmer.cs file, 130
responsive design, 129

DisplaySingle action method, 188, 204
Donut caching technique, 290
Downstream value, 279

F�       �
FindAsync method, 341

G�       �
GetHandler method, 97
GetSectionGroup method, 207
GetTime.cshtml file, 289

GetWebApplicationSection method, 179
Glimpse

AJAX, 172
definition, 170
HOST section, 173
HTTP section, 172
installation, 170
Timeline tab, 173
toolbar, 172
trace messages, 174

Google authentication
adding login button, 391
enable, 391
ExternalLoginInfo class property, 395
NuGet authentication packages, 391
support for, 392
testing, 396

Google Chrome, 8

H�       �
HandleEvent method, 59
Handlers

asynchronous handler, 90
configuration file

attributes, 88
RouteConfig.cs file, 88
Web.config file, 87

creation, 85
custom handler factory

CounterHandler.cs file, 98
definition, 97
handler selection, 101
IHttpHandlerFactory interface, 97
registration, 99
reusing handler, 102

definition, 81
IHttpHandler interface, 83
life-cycle events, 84
modules

data consuming, 94
DayModule.cs file, 92, 95
declarative interface, 95
registration, 79
Web.config file, 93

request life cycle, 81
System.Net.Http assembly, 81
testing, 89
URL routing system, 86

HashPassword method, 330
Html.BeginForm helper method, 255
HtmlTextWriter methods, 71–72
HttpApplication class, 286
HttpApplication.CompleteRequest  

method, 119

■ index

402

Database migration (cont.)



HttpRequest.MapPath method, 264
HttpResponse.Write method, 61
HttpServerUtility TransferRequest method, 118

I�       �
IdentityConfig.cs file, 309
IgnoreRoute method, 89
IIS Express, 31
Index action method, 180, 204, 207
INDEX_COUNTER, 275
Index.cshtml file, 15
Index.cshtml view, 148
Init method, 59
Install-Package command, 17
IsMobileDevice property, 139
IsReusable property, 83

J, K�       �
JavaScript Object Notation  

(JSON) format, 85

L�       �
LINQ method, 73
Location property, 279
Logout method, 356–357

M�       �
MapRequestHandler, 34
MobileDeviceModel property, 140
Model-View-Controller (MVC) pattern

application, 16
ASP.NET project, 12
benefits, 10
Bootstrap

bootstrap.min.css file, 19
bootstrap-theme.min.css file, 19
effect, 20
HTML elements, 21
Index.cshtml file, 18, 20

components
action method, 14
Add View, 15
HomeController.cs file, 14
index action method, 13
Index.cshtml file, 15
Votes class, 13
Votes.cs file, 12

definition, 10
Install-Package, 17
interactions, 10

Nuget package, 17
Razor, 10
Smalltalk project, 9
Visual Studio project, 11

Module events
consuming module

diagnostic data, 71
generating HTML, 71
HttpApplication class, 69
TotalTimeModule.cs file, 68
Web.config file, 70

definition, 67
RequestTimerEventArgs, 68
TimerModule.cs file, 67

Modules
built-in, 74

functionality, 75
HomeController.cs file, 72
LINQ method, 73
Modules.cshtml file, 73
View method, 73

data consuming, 94
creation

BeginRequest event, 60
Dispose(), 58
EndRequest event, 60
event handlers, 59
Init(app), 58
TimerModule.cs file, 58

DayModule.cs file, 92, 95
declarative interface, 95
definition, 55, 57
events (see Module events)
Index.cshtml file, 56
registration, 61
self-registering modules  

(see Self-registering modules)
SimpleApp project, 55–56
testing, 61
Web.config file, 93

N�       �
NameValueCollection properties, 187
Nexus.browser file, 139
NotifyDependencyChanged method, 269
NuGet package, 17

O�       �
OpenWebConfiguration  

method, 179, 207, 212
Open Web Interface for .NET (OWIN), 300
OtherAction action methods, 210

■ Index

403



Overriding configuration
folder-level files

HomeController.cs file, 211
OpenWebConfiguration method, 212
Views/Home folder, 211
Views/web.config file, 213

location element
HomeController.cs file, 209
Web.config file, 208

P, Q�       �
PopulateCache method, 254
PostMapRequestHandler  

life-cycle event, 34, 95
PostRequestHandlerExecute event, 34
PreApplicationStartMethod attribute, 63
PreRequestHandlerExecute event, 34
ProcessRequest method, 83–84

R�       �
Razor, 10
RecordEvent method, 36
RedirectToAction method, 111
ReleaseHandler method, 97
Request life cycle

error notifications
broken action method, 126
EventListModule.cs file, 124–125
event sequence, 126–127
registering and disabling modules, 125

events definition, 32–33
events handling

C# events, 39
Controllers/HomeController.cs file, 36
Global.asax.cs file, 35
HttpContext properties, 40
Razor foreach loop, 38
RecordEvent method, 36
RequestNotification enumeration, 41
single method, 40
Views/Home/Index.cshtml file, 36

handlers, 34
HandlerSelectionModule.cs file, 116
HttpServerUtility  

TransferRequest method, 118
InfoHandler.cs file, 115, 118
preempting, 117
Web.config file, 117

modules, 33
RequestFlow projects

Bootstrap package, 107
configuration, 106

controller creation, 107
Index.cshtml file, 108
testing, 109
view creation, 107–108
Visual Studio  

project creation, 106
request handling process, 34
terminating requests

brittle application components, 122
DebugModule.cs file, 120
module output, 122
Web.config file, 121

URL redirection
action method, 110
authenticate action method, 110
HttpResponse class, 111
RedirectModule.cs file, 112
RedirectToAction method, 111
RequestContext class, 113
RouteData class, 113
Web.config file, 114

Request life cycle, 81
RequestTimerEventArgs object, 68
Request tracing

application, 164
custom trace messages

HomeController.cs file, 167
in Trace Information, 169
TraceContext class, 166
trace statements, 168

definition, 163
detailed trace data, 165
enable, 163
Glimpse

AJAX, 172
definition, 170
HOST section, 173
HTTP section, 172
installation, 170
Timeline tab, 173
toolbar, 172
trace messages, 174

logging events
issues, 162
LogModule.cs file, 160
LogRequest, 160
PostLogRequest, 160
synchronization, 161
Web.config file, 162

logging request, 159
trace element, 163
Visual Studio debugger, 159

Role-related methods, 353
RouteCollection.Add method, 86

■ index

404



S�       �
Section group handler class, 206
Self-registering modules

CommonModules project, 63
InfoModule.cs file, 65
PreApplicationStartMethod, 63
registration class, 65
testing, 66

Session state data
Abandon method, 234
Abandon Session box, 237
CompleteForm action, 230
configuration

attributes, 242
cookieless, 243
Index.cshtml file, 243–244
SQL database, 248–250
state server, 246
storage, 245
track sessions, 243
URL, 245

context, 228
HTTP, 228
HttpContext.Session property, 231
HttpSessionState class, 231, 234
Index.cshtml file, 235
IsNew property, 236
LifecycleController.cs.file, 234
ProcessFirstForm  

action method, 233
querying and manipulating, 236
Registration controller, 232
RegistrationController.cs file, 228
registration data, 231
SecondForm.cshtml file, 229
SessionStateHelper.cs class, 232
SessionStateModule, 233
synchronization effect

Ajax requests, 240
ASP.NET platform, 237
GetMessage method, 238
Index action method, 238–239
jQuery script, 239
queuing requests, 237
SessionStateBehavior values, 241
SyncTest controller, 238, 241

Views/Registration folder, 229
SignIn method, 342
Simple configuration section

configSections/section  
element, 198

custom configuration section, 198

handler class
attribute parameters, 195
custom validation, 197
IntegerValidator attribute, 196
NewUserDefaultsSection.cs file, 194
validation attributes, 196

reading configuration sections, 199
Web.config file, 193

Single-factor authentication, 342
Single method, 40
State data

application state (see Application state data)
preparation, 217
session state (see Session state data)

Static Create method, 308
System.Diagnostics.Debug.Write method, 161

T�       �
Third-party capabilities data

additional properties, 145
custom capabilities provider, 145
module and data file, 144
module configuration, 144

Two-factor authentication, 342

U�       �
UpdateAsync method, 330
User authentication

AccountController.cs file, 340
authorization process

IdentityConfig class, 336
IIdentity interface, 335
IPrincipal interface, 335
with roles (see User authorization)
secure home controller, 334

CreateIdentityAsync method, 341
FindAsync method, 341
IAuthenticationManager  

interface, 342
implementation

account controller, 338
AccountController.cs file, 337
Login.cshtml file, 338
UserViewModels.cs file, 337
ValidateAntiForgeryToken  

attribute, 338
SignIn method, 342
testing, 343

User authorization
AccountController.cs file, 359
adding support, 344

■ Index

405



■ index

406

creating and deleting roles
creating views, 348
RoleAdminController.cs file, 346
testing, 350

HomeController.cs file, 357
logout method, 356–357
managing role memberships

editing role membership, 354
RoleAdminController.cs file, 351
role-related methods, 353
UserViewModels.cs file, 350
Views/RoleAdmin folder, 353

Sign Out link, 358

V�       �
VaryByHeader property, 284–285
VaryByParam property, 284
View state, 227
Visual C#, 63
Visual Studio Express 7, 2013

W, X, Y, Z�       �
Warn method, 166
WebConfigurationManager  

class, 185
Write method, 166

User authorization (cont.)



Pro ASP.NET MVC 5 
Platform

Adam Freeman



Pro ASP.NET MVC 5 Platform

Copyright © 2014 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. 
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material 
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the 
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the 
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from 
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are 
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6541-2

ISBN-13 (electronic): 978-1-4302-6542-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: James T. DeWolf
Development Editor: Douglas Pundick
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf, 

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,  
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, 
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Shea
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit  
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer  
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook 
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at  
www.apress.com. For detailed information about how to locate your book’s source code, go to  
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/


Dedicated to my lovely wife, Jacqui Griffyth.



vii

Contents

About the Author����������������������������������������������������������������������������������������������������������������� xv

About the Technical Reviewer������������������������������������������������������������������������������������������� xvii

Part 1: Getting Ready■■ ������������������������������������������������������������������������������������� 1

Chapter 1: Putting the ASP.NET Platform in Context■■ �����������������������������������������������������������3

What Is the ASP.NET Platform?�������������������������������������������������������������������������������������������������������3

What Do You Need to Know?����������������������������������������������������������������������������������������������������������5

What’s the Structure of This Book?������������������������������������������������������������������������������������������������5

Part 1: Getting Ready���������������������������������������������������������������������������������������������������������������������������������������������� 6

Part 2: The ASP.NET Platform Foundation��������������������������������������������������������������������������������������������������������������� 6

Part 3: The ASP.NET Services���������������������������������������������������������������������������������������������������������������������������������� 6

Are There Lots of Examples?����������������������������������������������������������������������������������������������������������6

Where Can You Get the Example Code?�����������������������������������������������������������������������������������������7

What Software Do You Need for This Book?�����������������������������������������������������������������������������������7

Preparing Visual Studio������������������������������������������������������������������������������������������������������������������������������������������ 7

Getting Google Chrome������������������������������������������������������������������������������������������������������������������������������������������� 8

Summary����������������������������������������������������������������������������������������������������������������������������������������8

Chapter 2: Pattern and Tools Primer■■ ����������������������������������������������������������������������������������9

Understanding the MVC Pattern�����������������������������������������������������������������������������������������������������9

Understanding the Benefits of the MVC Pattern��������������������������������������������������������������������������������������������������� 10

Creating the Example Project�������������������������������������������������������������������������������������������������������11

Creating the MVC Components����������������������������������������������������������������������������������������������������������������������������� 12

Testing the Application����������������������������������������������������������������������������������������������������������������������������������������� 16



■ Contents

viii

Adding Packages to the Project���������������������������������������������������������������������������������������������������17

Using Bootstrap����������������������������������������������������������������������������������������������������������������������������18

Summary��������������������������������������������������������������������������������������������������������������������������������������21

Part 2: The ASP.NET Platform Foundation■■ ���������������������������������������������������� 23

Chapter 3: The ASP.NET Life Cycles■■ ����������������������������������������������������������������������������������25

Preparing the Example Project�����������������������������������������������������������������������������������������������������25

The ASP.NET Application Life Cycle����������������������������������������������������������������������������������������������25

Understanding the Application Life Cycle������������������������������������������������������������������������������������������������������������� 26

Receiving Notifications When the Application Starts and Ends���������������������������������������������������������������������������� 27

Testing the Start and Stop Notifications��������������������������������������������������������������������������������������������������������������� 29

The ASP.NET Request Life Cycle���������������������������������������������������������������������������������������������������31

Understanding the Request Life Cycle������������������������������������������������������������������������������������������������������������������ 32

Understanding Modules and Handlers����������������������������������������������������������������������������������������������������������������� 33

Handling Request Life-Cycle Events Using Special Methods������������������������������������������������������������������������������� 34

Handling Request Life-Cycle Events Without Special Methods���������������������������������������������������������������������������� 39

The ASP.NET Context Objects�������������������������������������������������������������������������������������������������������42

Understanding the ASP.NET Context Objects�������������������������������������������������������������������������������������������������������� 42

Working with HttpApplication Objects������������������������������������������������������������������������������������������������������������������ 45

Working with HttpRequest Objects����������������������������������������������������������������������������������������������������������������������� 49

Working with HttpResponse Objects�������������������������������������������������������������������������������������������������������������������� 52

Summary��������������������������������������������������������������������������������������������������������������������������������������54

Chapter 4: Modules■■ ����������������������������������������������������������������������������������������������������������55

Preparing the Example Project�����������������������������������������������������������������������������������������������������55

ASP.NET Modules��������������������������������������������������������������������������������������������������������������������������57

Creating a Module������������������������������������������������������������������������������������������������������������������������������������������������ 58

Registering a Module�������������������������������������������������������������������������������������������������������������������������������������������� 61

Testing the Module����������������������������������������������������������������������������������������������������������������������������������������������� 61



■ Contents

ix

Creating Self-registering Modules�����������������������������������������������������������������������������������������������63

Creating the Project���������������������������������������������������������������������������������������������������������������������������������������������� 63

Creating the Module��������������������������������������������������������������������������������������������������������������������������������������������� 64

Creating the Registration Class���������������������������������������������������������������������������������������������������������������������������� 65

Testing the Module ���������������������������������������������������������������������������������������������������������������������������������������������� 66

Using Module Events��������������������������������������������������������������������������������������������������������������������66

Defining the Module Event����������������������������������������������������������������������������������������������������������������������������������� 67

Creating the Consuming Module�������������������������������������������������������������������������������������������������������������������������� 68

Generating HTML�������������������������������������������������������������������������������������������������������������������������������������������������� 71

Understanding the Built-in Modules���������������������������������������������������������������������������������������������72

Summary��������������������������������������������������������������������������������������������������������������������������������������77

Chapter 5: Handlers■■ ����������������������������������������������������������������������������������������������������������79

Preparing the Example Project�����������������������������������������������������������������������������������������������������79

Adding the System.Net.Http Assembly����������������������������������������������������������������������������������������������������������������� 80

ASP.NET Handlers�������������������������������������������������������������������������������������������������������������������������81

Understanding Handlers in the Request Life Cycle���������������������������������������������������������������������������������������������� 81

Understanding Handlers��������������������������������������������������������������������������������������������������������������������������������������� 83

Handlers and the Life-Cycle Events���������������������������������������������������������������������������������������������������������������������� 84

Creating a Handler�����������������������������������������������������������������������������������������������������������������������85

Registering a Handler Using URL Routing������������������������������������������������������������������������������������������������������������ 86

Registering a Handler Using the Configuration File���������������������������������������������������������������������������������������������� 87

Testing the Handler����������������������������������������������������������������������������������������������������������������������������������������������� 89

Creating Asynchronous Handlers�������������������������������������������������������������������������������������������������90

Creating Modules That Provide Services to Handlers������������������������������������������������������������������92

Targeting a Specific Handler�������������������������������������������������������������������������������������������������������������������������������� 94

Custom Handler Factories������������������������������������������������������������������������������������������������������������97

Controlling Handler Instantiation�������������������������������������������������������������������������������������������������������������������������� 98

Selecting Handlers Dynamically������������������������������������������������������������������������������������������������������������������������� 100

Reusing Handlers����������������������������������������������������������������������������������������������������������������������������������������������� 101

Summary������������������������������������������������������������������������������������������������������������������������������������103



■ Contents

x

Chapter 6: Disrupting the Request Life Cycle■■ �����������������������������������������������������������������105

Preparing the Example Project���������������������������������������������������������������������������������������������������105

Adding the Bootstrap Package��������������������������������������������������������������������������������������������������������������������������� 107

Creating the Controller��������������������������������������������������������������������������������������������������������������������������������������� 107

Creating the View����������������������������������������������������������������������������������������������������������������������������������������������� 107

Testing the Example Application������������������������������������������������������������������������������������������������������������������������� 109

Using URL Redirection����������������������������������������������������������������������������������������������������������������109

Understanding the Normal Redirection Process������������������������������������������������������������������������������������������������� 110

Simplifying the Redirection Process������������������������������������������������������������������������������������������������������������������� 111

Managing Handler Selection������������������������������������������������������������������������������������������������������114

Preempting Handler Selection���������������������������������������������������������������������������������������������������������������������������� 115

Transferring a Request to a Different Handler���������������������������������������������������������������������������������������������������� 117

Terminating Requests����������������������������������������������������������������������������������������������������������������119

Responding to a Special URL������������������������������������������������������������������������������������������������������������������������������ 120

Avoiding Brittle Application Components������������������������������������������������������������������������������������������������������������ 122

Handling Error Notifications�������������������������������������������������������������������������������������������������������124

Summary������������������������������������������������������������������������������������������������������������������������������������127

Chapter 7: Detecting Device Capabilities■■ �����������������������������������������������������������������������129

Preparing the Example Project���������������������������������������������������������������������������������������������������130

Detecting Device Capabilities�����������������������������������������������������������������������������������������������������134

Getting Browser Capabilities������������������������������������������������������������������������������������������������������������������������������ 135

Improving Capability Data����������������������������������������������������������������������������������������������������������138

Creating a Custom Browser File������������������������������������������������������������������������������������������������������������������������� 139

Creating a Capability Provider���������������������������������������������������������������������������������������������������������������������������� 141

Using Third-Party Capabilities Data�������������������������������������������������������������������������������������������������������������������� 143

Adapting to Capabilities�������������������������������������������������������������������������������������������������������������147

Avoiding the Capabilities Trap���������������������������������������������������������������������������������������������������������������������������� 148

Tailoring Content to Match Devices�������������������������������������������������������������������������������������������������������������������� 152

Summary������������������������������������������������������������������������������������������������������������������������������������158



■ Contents

xi

Chapter 8: Tracing Requests■■ �������������������������������������������������������������������������������������������159

Preparing the Example Project���������������������������������������������������������������������������������������������������159

Logging Requests�����������������������������������������������������������������������������������������������������������������������159

Responding to the Logging Events���������������������������������������������������������������������������������������������160

Tracing Requests������������������������������������������������������������������������������������������������������������������������163

Enabling Request Tracing ���������������������������������������������������������������������������������������������������������������������������������� 163

View Request Traces������������������������������������������������������������������������������������������������������������������������������������������� 164

Adding Custom Trace Messages ������������������������������������������������������������������������������������������������������������������������ 166

Using Glimpse����������������������������������������������������������������������������������������������������������������������������170

Installing Glimpse����������������������������������������������������������������������������������������������������������������������������������������������� 170

Using Glimpse����������������������������������������������������������������������������������������������������������������������������������������������������� 171

Adding Trace Messages to Glimpse ������������������������������������������������������������������������������������������������������������������� 174

Summary������������������������������������������������������������������������������������������������������������������������������������175

Part 3: The ASP.NET Platform Services■■ ������������������������������������������������������ 177

Chapter 9: Configuration■■ ������������������������������������������������������������������������������������������������179

Preparing the Example Project���������������������������������������������������������������������������������������������������180

ASP.NET Configuration����������������������������������������������������������������������������������������������������������������181

Understanding the Configuration Hierarchy������������������������������������������������������������������������������������������������������� 182

Working with Basic Configuration Data��������������������������������������������������������������������������������������184

Using Application Settings���������������������������������������������������������������������������������������������������������������������������������� 185

Using Connection Strings����������������������������������������������������������������������������������������������������������������������������������� 190

Grouping Settings Together��������������������������������������������������������������������������������������������������������192

Creating a Simple Configuration Section������������������������������������������������������������������������������������������������������������ 193

Creating a Collection Configuration Section������������������������������������������������������������������������������������������������������� 200

Creating Section Groups������������������������������������������������������������������������������������������������������������������������������������� 205

Overriding Configuration Settings����������������������������������������������������������������������������������������������208

Using the Location Element�������������������������������������������������������������������������������������������������������������������������������� 208

Using Folder-Level Files������������������������������������������������������������������������������������������������������������������������������������� 211

Navigating the ASP.NET Configuration Elements������������������������������������������������������������������������214

Summary������������������������������������������������������������������������������������������������������������������������������������216



■ Contents

xii

Chapter 10: State Data■■ ���������������������������������������������������������������������������������������������������217

Preparing the Example Project���������������������������������������������������������������������������������������������������217

Application State Data����������������������������������������������������������������������������������������������������������������219

Using Application State��������������������������������������������������������������������������������������������������������������������������������������� 220

Understanding the Synchronization Effect��������������������������������������������������������������������������������������������������������� 223

Sessions and Session State Data�����������������������������������������������������������������������������������������������228

Working with Session Data��������������������������������������������������������������������������������������������������������������������������������� 228

Using Session State Data����������������������������������������������������������������������������������������������������������������������������������� 231

Understanding How Sessions Work�������������������������������������������������������������������������������������������������������������������� 233

Understanding the Synchronization Effect��������������������������������������������������������������������������������������������������������� 237

Configuring Sessions and Session State������������������������������������������������������������������������������������242

Tracking Sessions Without Cookies�������������������������������������������������������������������������������������������������������������������� 242

Storing Session Data������������������������������������������������������������������������������������������������������������������������������������������ 245

Summary������������������������������������������������������������������������������������������������������������������������������������250

Chapter 11: Caching Data■■ �����������������������������������������������������������������������������������������������251

Preparing the Example Project���������������������������������������������������������������������������������������������������251

Adding the System.Net.Http Assembly��������������������������������������������������������������������������������������������������������������� 252

Caching Data������������������������������������������������������������������������������������������������������������������������������252

Using Basic Caching������������������������������������������������������������������������������������������������������������������������������������������� 253

Using Advanced Caching������������������������������������������������������������������������������������������������������������259

Using Absolute Time Expiration�������������������������������������������������������������������������������������������������������������������������� 260

Using Sliding Time Expirations��������������������������������������������������������������������������������������������������������������������������� 261

Specifying Scavenging Prioritization������������������������������������������������������������������������������������������������������������������ 262

Using Cache Dependencies�������������������������������������������������������������������������������������������������������������������������������� 263

Depending on Another Cached Item������������������������������������������������������������������������������������������������������������������� 265

Creating Custom Dependencies������������������������������������������������������������������������������������������������������������������������� 266

Creating Aggregate Dependencies��������������������������������������������������������������������������������������������������������������������� 268

Receiving Dependency Notifications������������������������������������������������������������������������������������������269

Using Notifications to Prevent Cache Ejection���������������������������������������������������������������������������������������������������� 270

Summary������������������������������������������������������������������������������������������������������������������������������������272



■ Contents

xiii

Chapter 12: Caching Content■■ ������������������������������������������������������������������������������������������273

Preparing the Example Project���������������������������������������������������������������������������������������������������274

Using the Content Caching Attribute������������������������������������������������������������������������������������������277

Controlling the Cache Location��������������������������������������������������������������������������������������������������������������������������� 278

Managing Data Caching�������������������������������������������������������������������������������������������������������������������������������������� 283

Controlling Caching with Code���������������������������������������������������������������������������������������������������290

Dynamically Setting Cache Policy���������������������������������������������������������������������������������������������������������������������� 291

Validating Cached Content���������������������������������������������������������������������������������������������������������������������������������� 293

Summary������������������������������������������������������������������������������������������������������������������������������������295

Chapter 13: Getting Started with Identity■■ �����������������������������������������������������������������������297

Preparing the Example Project���������������������������������������������������������������������������������������������������298

Setting Up ASP.NET Identity��������������������������������������������������������������������������������������������������������300

Creating the ASP.NET Identity Database������������������������������������������������������������������������������������������������������������� 301

Adding the Identity Packages����������������������������������������������������������������������������������������������������������������������������� 302

Updating the Web.config File������������������������������������������������������������������������������������������������������������������������������ 302

Creating the Entity Framework Classes�������������������������������������������������������������������������������������������������������������� 304

Using ASP.NET Identity���������������������������������������������������������������������������������������������������������������309

Enumerating User Accounts������������������������������������������������������������������������������������������������������������������������������� 310

Creating Users���������������������������������������������������������������������������������������������������������������������������������������������������� 312

Validating Passwords����������������������������������������������������������������������������������������������������������������������������������������� 317

Validating User Details���������������������������������������������������������������������������������������������������������������������������������������� 321

Completing the Administration Features������������������������������������������������������������������������������������325

Implementing the Delete Feature����������������������������������������������������������������������������������������������������������������������� 326

Implementing the Edit Feature��������������������������������������������������������������������������������������������������������������������������� 327

Summary������������������������������������������������������������������������������������������������������������������������������������331

Chapter 14: Applying ASP.NET Identity■■ ���������������������������������������������������������������������������333

Preparing the Example Project���������������������������������������������������������������������������������������������������333

Authenticating Users������������������������������������������������������������������������������������������������������������������333

Understanding the Authentication/Authorization Process���������������������������������������������������������������������������������� 334

Preparing to Implement Authentication�������������������������������������������������������������������������������������������������������������� 336



■ Contents

xiv

Adding User Authentication�������������������������������������������������������������������������������������������������������������������������������� 339

Testing Authentication���������������������������������������������������������������������������������������������������������������������������������������� 343

Authorizing Users with Roles�����������������������������������������������������������������������������������������������������343

Adding Support for Roles������������������������������������������������������������������������������������������������������������������������������������ 344

Creating and Deleting Roles������������������������������������������������������������������������������������������������������������������������������� 346

Managing Role Memberships����������������������������������������������������������������������������������������������������������������������������� 350

Using Roles for Authorization����������������������������������������������������������������������������������������������������������������������������� 356

Seeding the Database����������������������������������������������������������������������������������������������������������������360

Summary������������������������������������������������������������������������������������������������������������������������������������363

Chapter 15: Advanced ASP.NET Identity■■ �������������������������������������������������������������������������365

Preparing the Example Project���������������������������������������������������������������������������������������������������365

Adding Custom User Properties�������������������������������������������������������������������������������������������������367

Defining Custom Properties�������������������������������������������������������������������������������������������������������������������������������� 368

Preparing for Database Migration���������������������������������������������������������������������������������������������������������������������� 370

Performing the Migration����������������������������������������������������������������������������������������������������������������������������������� 374

Testing the Migration������������������������������������������������������������������������������������������������������������������������������������������ 374

Defining an Additional Property�������������������������������������������������������������������������������������������������������������������������� 375

Working with Claims������������������������������������������������������������������������������������������������������������������379

Understanding Claims���������������������������������������������������������������������������������������������������������������������������������������� 380

Creating and Using Claims��������������������������������������������������������������������������������������������������������������������������������� 384

Authorizing Access Using Claims����������������������������������������������������������������������������������������������������������������������� 388

Using Third-Party Authentication������������������������������������������������������������������������������������������������390

Enabling Google Authentication�������������������������������������������������������������������������������������������������������������������������� 390

Testing Google Authentication���������������������������������������������������������������������������������������������������������������������������� 396

Summary������������������������������������������������������������������������������������������������������������������������������������397

Index����������������������������������������������������������������������������������������������������������������������������������399



xv

About the Author

Adam Freeman is an experienced IT professional who has held senior positions  
in a range of companies, most recently serving as chief technology officer and  
chief operating officer of a global bank. Now retired, he spends his time writing  
and running. 



xvii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft technologies.  
He works for Brain Force (www.brainforce.com) in its Italian branch (www.brainforce.it). He is a Microsoft Certified 
Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional, 
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and international 
magazines and coauthored more than ten books on a variety of computer topics.

http://www.brainforce.com
http://www.brainforce.it

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Part 1: Getting Ready
	Chapter 1: Putting the ASP.NET Platform in Context
	What Is the ASP.NET Platform?
	What Do You Need to Know?
	What’s the Structure of This Book?
	Part 1: Getting Ready
	Part 2: The ASP.NET Platform Foundation
	Part 3: The ASP.NET Services

	Are There Lots of Examples?
	Where Can You Get the Example Code?
	What Software Do You Need for This Book?
	Preparing Visual Studio
	Getting Google Chrome

	Summary

	Chapter 2: Pattern and Tools Primer
	Understanding the MVC Pattern
	Understanding the Benefits of the MVC Pattern

	Creating the Example Project
	Creating the MVC Components
	Testing the Application

	Adding Packages to the Project
	Using Bootstrap
	Summary


	Part 2: The ASP.NET Platform Foundation
	Chapter 3: The ASP.NET Life Cycles
	Preparing the Example Project
	The ASP.NET Application Life Cycle
	Understanding the Application Life Cycle
	Receiving Notifications When the Application Starts and Ends
	Testing the Start and Stop Notifications
	Testing the Start Notification
	Testing the Stop Notification


	The ASP.NET Request Life Cycle
	Understanding the Request Life Cycle
	Understanding Modules and Handlers
	Handling Request Life-Cycle Events Using Special Methods
	Displaying the Event Information

	Handling Request Life-Cycle Events Without Special Methods
	Using a Single Method to Handle Multiple Events


	The ASP.NET Context Objects
	Understanding the ASP.NET Context Objects
	Working with HttpApplication Objects
	Handling Property Exceptions

	Working with HttpRequest Objects
	Working with HttpResponse Objects

	Summary

	Chapter 4: Modules
	Preparing the Example Project
	ASP.NET Modules
	Creating a Module
	Setting Up the Event Handlers
	Handling the BeginRequest Event
	Handling the EndRequest Event

	Registering a Module
	Testing the Module

	Creating Self-registering Modules
	Creating the Project
	Creating the Module
	Creating the Registration Class
	Testing the Module

	Using Module Events
	Defining the Module Event
	Creating the Consuming Module
	Generating HTML

	Understanding the Built-in Modules
	Summary

	Chapter 5: Handlers
	Preparing the Example Project
	Adding the System.Net.Http Assembly

	ASP.NET Handlers
	Understanding Handlers in the Request Life Cycle
	Understanding Handlers
	Handlers and the Life-Cycle Events

	Creating a Handler
	Registering a Handler Using URL Routing
	Registering a Handler Using the Configuration File
	Testing the Handler

	Creating Asynchronous Handlers
	Creating Modules That Provide Services to Handlers
	Consuming the Items Data
	Targeting a Specific Handler
	Decoupling Components Using Declarative Interfaces


	Custom Handler Factories
	Controlling Handler Instantiation
	Registering the Handler Factory

	Selecting Handlers Dynamically
	Reusing Handlers

	Summary

	Chapter 6: Disrupting the Request Life Cycle
	Preparing the Example Project
	Adding the Bootstrap Package
	Creating the Controller
	Creating the View
	Testing the Example Application

	Using URL Redirection
	Understanding the Normal Redirection Process
	Simplifying the Redirection Process

	Managing Handler Selection
	Preempting Handler Selection
	Transferring a Request to a Different Handler

	Terminating Requests
	Responding to a Special URL
	Avoiding Brittle Application Components

	Handling Error Notifications
	Summary

	Chapter 7: Detecting Device Capabilities
	Preparing the Example Project
	Detecting Device Capabilities
	Getting Browser Capabilities

	Improving Capability Data
	Creating a Custom Browser File
	Creating a Capability Provider
	Using Third-Party Capabilities Data
	Installing the Module and Data File
	Configuring the Module
	Disabling the Custom Capabilities Provider
	Displaying Additional Properties


	Adapting to Capabilities
	Avoiding the Capabilities Trap
	Using Responsive Design Instead of Capabilities

	Tailoring Content to Match Devices
	Adapting Directly in the View
	Using Partial Views
	Using Display Modes


	Summary

	Chapter 8: Tracing Requests
	Preparing the Example Project
	Logging Requests
	Responding to the Logging Events
	Tracing Requests
	Enabling Request Tracing
	View Request Traces
	Adding Custom Trace Messages

	Using Glimpse
	Installing Glimpse
	Using Glimpse
	Adding Trace Messages to Glimpse

	Summary


	Part 3: The ASP.NET Platform Services
	Chapter 9: Configuration
	Preparing the Example Project
	ASP.NET Configuration
	Understanding the Configuration Hierarchy

	Working with Basic Configuration Data
	Using Application Settings
	Reading Application Settings

	Using Connection Strings
	Reading Connection Strings


	Grouping Settings Together
	Creating a Simple Configuration Section
	Creating the Configuration Section Handler Class
	Defining the Section
	Reading Configuration Sections

	Creating a Collection Configuration Section
	Creating the Item Handler Class
	Creating the Collection Handler Class
	Creating the Configuration Section Handler Class
	Defining the Configuration Section
	Reading Collection Configuration Sections

	Creating Section Groups
	Creating the Section Group Handler Class
	Reading Section Groups


	Overriding Configuration Settings
	Using the Location Element
	Using Folder-Level Files

	Navigating the ASP.NET Configuration Elements
	Summary

	Chapter 10: State Data
	Preparing the Example Project
	Application State Data
	Using Application State
	Understanding the Synchronization Effect
	Performing Related Operations


	Sessions and Session State Data
	Working with Session Data
	Using Session State Data
	Understanding How Sessions Work
	Understanding the Synchronization Effect
	Demonstrating the Problem
	Controlling Session State


	Configuring Sessions and Session State
	Tracking Sessions Without Cookies
	Storing Session Data
	Using the State Server
	Using a SQL Database


	Summary

	Chapter 11: Caching Data
	Preparing the Example Project
	Adding the System.Net.Http Assembly

	Caching Data
	Using Basic Caching
	Configuring the Cache


	Using Advanced Caching
	Using Absolute Time Expiration
	Using Sliding Time Expirations
	Specifying Scavenging Prioritization
	Using Cache Dependencies
	Creating a File Dependency

	Depending on Another Cached Item
	Creating Custom Dependencies
	Creating Aggregate Dependencies

	Receiving Dependency Notifications
	Using Notifications to Prevent Cache Ejection

	Summary

	Chapter 12: Caching Content
	Preparing the Example Project
	Using the Content Caching Attribute
	Controlling the Cache Location
	Caching at the Server

	Managing Data Caching
	Varying Caching Using Headers
	Varying Caching Using Form or Query String Data
	Creating Custom Cache Variations
	Creating Cache Profiles
	Caching Child Action Output


	Controlling Caching with Code
	Dynamically Setting Cache Policy
	Validating Cached Content

	Summary

	Chapter 13: Getting Started with Identity
	Preparing the Example Project
	Setting Up ASP.NET Identity
	Creating the ASP.NET Identity Database
	Adding the Identity Packages
	Updating the Web.config File
	Creating the Entity Framework Classes
	Creating the User Class
	Creating the Database Context Class
	Creating the User Manager Class
	Creating the Start Class


	Using ASP.NET Identity
	Enumerating User Accounts
	Creating Users
	Testing the Create Functionality

	Validating Passwords
	Implementing a Custom Password Validator

	Validating User Details

	Completing the Administration Features
	Implementing the Delete Feature
	Implementing the Edit Feature
	Creating the View


	Summary

	Chapter 14: Applying ASP.NET Identity
	Preparing the Example Project
	Authenticating Users
	Understanding the Authentication/Authorization Process
	Preparing to Implement Authentication
	Adding User Authentication
	Testing Authentication

	Authorizing Users with Roles
	Adding Support for Roles
	Creating and Deleting Roles
	Creating the Views
	Testing Creating and Deleting Roles

	Managing Role Memberships
	Testing Editing Role Membership

	Using Roles for Authorization

	Seeding the Database
	Summary

	Chapter 15: Advanced ASP.NET Identity
	Preparing the Example Project
	Adding Custom User Properties
	Defining Custom Properties
	Preparing for Database Migration
	Changing the Database Context Class

	Performing the Migration
	Testing the Migration
	Defining an Additional Property
	Adding Application Support
	Performing the Migration


	Working with Claims
	Understanding Claims
	Creating and Using Claims
	Applying Claims

	Authorizing Access Using Claims

	Using Third-Party Authentication
	Enabling Google Authentication
	Testing Google Authentication

	Summary


	Index



